

Executive Summary
The Reiman Gardens and other facilities with butterfly enclosures need a way to quickly and
reliably store and access butterfly tagging data electronically. It is important that this data is
readily available to facility managers because it can help them optimize their enclosures to
maximize the butterflies' life spans. We are creating a web application that allows guests and
facility docents to be able to enter butterfly sightings while they are at an enclosure. The
facility admins will then be able to generate meaningful reports(life span, number of sightings,
time since last sighting, etc.) based on all of the data collected from the sightings. Our
application will be able to adapt to various butterfly exhibits and will allow each exhibit to use
their own unique tagging system in order to fit their needs.

For our frontend, we are using HTML/CSS/JS and will not be using a framework in order to
maximize performance. For the backend, we will be using the Spring framework; for our
database, we will be using MongoDB; and for our server, we will be hosting on AWS. We are
currently on the verge of deploying our application onto our client’s AWS to begin beta testing
with real guest users within the Reiman Gardens environment. This will allow us to get real
feedback from not only the client, but guests and docents alike to maximize the user
experience of the application moving forward. Our web application is readily available to use
on devices of all sizes, from phones to desktop computers. We have ensured that our pages can
adapt and still be presentable under all screen sizes and in multiple browsers. All admin
functionality has been completed, which includes functionality for any tag definition a facility
may be using in correlation to all web page views. Our next steps are to finish the functionality
for administrator reporting, which includes a variety of unique data reports and multi-facility
data comparisons. From there, we will continue our beta testing and increment to achieve the
best user experience.

Learning Summary

1. Development Standards & Practices Used
a. ISO/IEC 27001: Information Security Management Systems

b. ISO/IEC 25059: Systems and Software Quality Requirements and Evaluation

c. ISO/IEC 19772: Authenticated encryption

d. RFC 7231: Hypertext Transfer Protocol (HTTP)

e. RFC 8446: Transport Layer Security (TLS) Protocol

1

f. ECMA 404: JSON Data Interchange SyntaxRFC 7510 - JSON Web Signature

g. NIST SP 800-63B: Digital Identity Standards

2. Summary of Requirements

The website application is required to meet several outlined requirements that were set
by the client. Additional requirements were derived from the original functional and
resource requirements.

The functional requirements included having a user login system (authentication),
supporting a user hierarchy system, creating reports from queried data, quick response
and query times, and for portability of the website. The client also requested that this
web application be hosted on Amazon Web Services with a low upkeep cost. For storing
butterfly data across several different butterfly facilities, several different data rules and
requirements were created. These rules include enforcing data integrity policies, quickly
accessing data, and ensuring data scalability. Several user experiences were laid out
since this website will also be accessible to visitors of the butterfly facility. These
requirements would ensure that the website is aesthetically pleasing to view, accessible
on cellular devices, and easy to navigate.

3. Applicable Courses from Iowa State University
This is a list of applicable courses from Iowa State University and their direct
application: SE 309–Concepts of software development as a team, SE 319–web
development concepts applied to the web application, COM S 363–Database
management and storage concepts applied to the database management system, SE
185–basic programming concepts applied to our code practices, SE 186X–Basic concepts
of developing software as a team, CPR E 230–computer networking principles applied to
the development of the web server, CPR E 231–cyber security principles applied to our
overall system, SE 317–software testing concepts that were integrated into our
development process, SE 421–security practices applied to our system, COM S 252–Linux
operating system concepts applied to our virtual machines, COM S 352–operating
system concepts applied to our deployment virtual machines, ENGL 314–technical
writing concepts applied to our professional communication and documents, SP CM
212–public speaking skills applied to our relationships with our client, COM S
227–general programming and object concepts applied to our coding practices, COM S
228–general data structure concepts applied to our coding and efficiency practices,
COM S 422–cloud computing concepts applied to our deployment system inside the
cloud, COM S 417–specialized testing procedures applied to testing the web application
against the requirements.

2

4. New Skills/Knowledge acquired
This project required our team members to take time to learn several new skills for the
overall website to be built. Our client required the application to be hosted on AWS.
However, our team did not possess the necessary experience to properly use the AWS
features. To compensate for this, some team members took the time in order to learn
how to integrate different resources from AWS into our application and how to properly
host the web application on AWS.

At the beginning of the project, our client had sent us a Figma board that contained
different web pages that were designed to his liking. He requested that we design our
website to look like the web pages outlined in the Figma board. In a team decision, we
decided that it would be best to learn how to import the existing designs on the Figma
board into actual HTML/CSS files. The frontend team members took the time to learn
PxCode, a software that allows you to transfer Figma board pages into HTML/CSS files
while retaining the original design and features of the Figma board web page.

Spring was selected as the framework to build the backend on. This was because our
team had already gained experience using this framework from previous projects.
However, the complexity of the project required additional knowledge of using the
Spring framework and integrating APIs into the system. This knowledge allowed the
backend to be more aligned with the requirements.

In the application, a user account and login management system were required. Since
this will be deployed out to the public through butterfly facilities. Putting an emphasis
on security for the accounts is required. Using JSON Web Tokens (JWT) was decided as
the best approach to implement authentication in the web application. The backend
members had to learn how to set up and integrate the authentication into the existing
API calls.

The selected method of data storage was by using MongoDB, a non-relational database.
However, using the built-in MongoRepository library inside Spring with the basic query
calls would cause requests to take longer than anticipated. Several requests would cause
response timeouts. In order to expedite the database queries, members on the backend
had to integrate several advanced Mongo queries and aggregation pipelines. By
implementing the advanced queries and pipelines, this allowed for the database query
request times to be within the time specifications that were set by the client.

3

Table of Contents

Executive Summary 1
Learning Summary 1

1. Development Standards & Practices Used 1
2. Summary of Requirements 2
3. Applicable Courses from Iowa State University 2
4. New Skills/Knowledge acquired 3

Table of Contents 4
1. Introduction 7

1.1. Problem Statement 7
1.2. Intended Users 7

2. Requirements, Constraints, and Standards 9
2.1. Functional and Non-Functional Requirements 9

1. User Authentication 9
2. Support User Group Hierarchy 9
3. Support Multiple Domains/Facilities 9
4. Create Reports from Queried Data 10
5. Quick Response and Querying Times 10
6. Portability 10

2.2. Resource Requirements 10
1. AWS Hosting Services 10
2. Cost-Efficient Upkeep 10

2.3. Aesthetic Requirements 11
1. Color Scheme 11
2. Typography 11
3. Images 11

2.4. User Experiential Requirements 12
1. Ease of Navigation 12
2. Accessibility 12

2.5. Database Requirements 12
1. Data Integrity 12
2. Scalability 12
3. Performance 12
4. Design 13

2.6. Engineering Standards 13
1. RFC 7231 – HTTP/1.1 Semantics and Content 13
2. RFC 7519 – JSON Web Tokens (JWT) 13
3. NIST SP 800-63B – Digital Identity Guidelines 14

3. Project Plan 15

4

3.1 Project Management/Tracking Procedures 15
3.2 Task Decomposition 15

Frontend 15
Backend 16
Frontend + Backend 16

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 17
Frontend 17
Backend 18

3.4 Project Timeline/Schedule 19
3.4.1 Gantt Chart Tasks (Semester 1) 19
3.4.2. Gantt Chart Tasks (Second Semester) 21

Frontend 22
Backend 23

3.4.3. Deliverable Dates 24
3.5 Risks and Risk Management/Mitigation 24
3.6 Personnel Effort Requirements 29
3.7 Other Resource Requirements 33

4. Design 35
4.1 Design Context 35

4.1.1 Broader Context 35
4.1.2 Prior Work/Solutions 35
4.1.3 Technical Complexity 37

4.2 Design Exploration 38
4.2.1 Design Decisions 38
4.2.2 Ideation 38
4.2.3 Decision-Making and Trade-Off 40

4.3 Final Design 42
4.3.1 Overview 42
4.3.2 Detailed Design and Visual(s) 43
4.3.3 Functionality 49
4.3.4 Areas of Challenge 49

4.4 Technology Considerations 50
5 Testing 51

5.1 Unit Testing 51
5.2 Interface Testing 51
5.3 Integration Testing 52
5.4 System Testing 53
5.5 Regression Testing 53
5.6 Acceptance Testing 53
5.7 User Testing 54
5.8 Security Testing 54

5

5.9 Results 55
6 Implementation 56

6.1 Design Analysis 56
7 Ethics and Professional Responsibility 58

7.1 Areas of Professional Responsibility/Codes of Ethics 58
7.2 Four Principles 60
7.3 Virtues 61

8 Conclusions 64
8.1 Summary of Progress 64
8.2 Value Provided 64
8.3 Next Steps 65

9 References 66
10 Appendices 67

Appendix 1 – Operation Manual 67
Appendix 2 – alternative/initial version of design 99
Appendix 3 – Other considerations 100
Appendix 4 – Code 103
Appendix 5 – Team Contract 103

6

1. Introduction

1.1. Problem Statement
The Reiman Gardens and other facilities with butterfly enclosures need to be able to
quickly and reliably store and access butterfly tagging data electronically. Butterflies
within enclosures are currently being tagged; each facility needed a standardized way to
enter and store butterfly sightings relative to their facility's tagging system. Facilities
need a web application that allows guests and volunteers to quickly enter a butterfly tag
sighting, as well as gives facility administrators a fast and reliable way to view database
information. Reporting data is essential for facilities to make educated decisions on
enclosure environments and derive conclusions based on certain butterfly species'
lifespans.

We developed a web application to address the needs of any facility with a tagged
butterfly enclosure. The web application provides an easily accessible user interface
from any device in order to provide the highest level of sighting entries from any type of
user. Our solution allows administrators to build reports on this sighting data
dynamically, with customizable report types and filters.

1.2. Intended Users

There are four tiers of users for our application, each of which has different roles and
privileges within the application. Each of those users is listed below.

Guests: A guest is a person who is visiting the butterfly enclosure for educational or
entertainment purposes. A guest visitor could be a person of any age and background.
Guests need an easy-to-use web application that they can use to quickly enter a
butterfly sighting while visiting a butterfly enclosure. Since guests will be using a
mobile device to enter butterfly sightings, they need a web application that can be used
on any type of device.

Docent / Volunteers: A docent or volunteer is a facility member who regularly spends
time within the butterfly enclosure. Since a docent will use the web app much more
frequently, they need a fast and easy way to continuously enter sightings. Docents will
also benefit from an individual login so their sightings can be entered with more
credibility than a guest visitor. Since docents are more reputable and garner more
priority, docent accounts may also need to be configured with higher levels of privilege
to database information based on administrative needs.

7

Domain Administrator: Domain Administrators will be the person or people in
charge of the butterfly enclosure at their given facility. A domain administrator will be a
person with a higher level of knowledge of butterfly species, as well as their given
enclosure and tagging system. Domain administrators will need to configure the web
app for their facility and its tagging system, as well as configure user accounts for
docent and guest users. Domain administrators will also need full access to the database
of butterfly sightings and need to be able to generate reports based on their butterfly
sightings.

Super Administrators: Super Administrators will be above all facilities and be able to
create new facilities based on the growth of the application. Super Administrators will
also be able to view and report on all data regardless of which facility it is from, in
addition to all permissions of the other user groups.

8

2. Requirements, Constraints, and Standards

2.1. Functional and Non-Functional Requirements

1. User Authentication
The user website is required to have a user authentication method where
administrator and docent accounts can securely log in or be created. A basic
password recovery and reset functionality will be available only to the Super
Admin. Accounts can be registered with a unique username and password.
Guest users will not require a password when their account is created to tie
butterfly sightings to.

2. Support User Group Hierarchy
The user account type and permission scheme will be divided into four
different levels, the order from lowest to highest permission level: Guest User,
Docent, Domain Admin, Super Admin. The Guest User needs to be able to
submit the butterflies that they see during their visit within the web
application, because it updates butterfly information. The Docent needs to be
able to easily insert butterfly sightings while maintaining a high level of
credibility through secure credentials. The Domain Admin needs to be able to
view data from their site because they want to be able to use the data from
their site for research. The Super Admin needs to be able to view all data from
every facility in order to create reports that compare multiple facilities' data.

3. Support Multiple Domains/Facilities
The web application must be scalable to support the ability to add multiple
butterfly domains/facilities through the approval of the Super Admin. Each
domain will have its own set of butterfly tagging rules. Each domain's butterfly
and user data will be isolated from other domains. However, it will be
accessible by the Super Admin. Each Domain Admin can manage their own
domain but cannot access other domains.

9

4. Create Reports from Queried Data
A Domain Admin or Super Admin has the ability to generate specialized
butterfly reports based on the butterfly data in their facility. Some of these
reports include calculating the average lifespan by butterfly species, finding the
last sighting of an individual butterfly, finding the total number of sightings on
a butterfly, calculating the total number of butterflies of a specific species, and
any additional reports per the client’s request.

5. Quick Response and Querying Times
The web application must be able to have very quick performance and response
times. These requests that must have fast performance include generating
butterfly reports and page load times. Some metrics outlined include having
page load time below 2 seconds, interactive elements responding within 500
milliseconds from the click time, fetching data in under 4 seconds, and
generating reports in under 4 seconds.

6. Portability
This website must be able to work on all basic platforms that have a web
browser, i.e., desktop, tablet, and mobile devices. The website must be able to
adapt its structure to fit the format of each of these devices.

2.2. Resource Requirements

1. AWS Hosting Services
The system will use AWS for hosting because the client is most familiar with
AWS and wants to be able to consolidate all his services to a single provider.

2. Cost-Efficient Upkeep
The website should run for no more than $15 per month while maintaining a
high level of performance, which is comparable to the previous designs.

10

2.3. Aesthetic Requirements

1. Color Scheme
The website will be designed with a consistent color scheme throughout the
web pages. The color palette will be well-designed and follow basic color theory
to enhance the user experience. The background and text will contrast with
each other in order to ensure readability.

Figure 2.3 and 2.4 (Images from our website design that display color theme characteristics)

2. Typography
The website will use fonts that are compatible with all web browsers and that
are readable for most users. The website will have adequate line spacing and
margins for readability.

3. Images
All images that are used will be high-quality and high-resolution images that
are related to the content.

11

2.4. User Experiential Requirements

1. Ease of Navigation
The website must be easily navigable and intuitive for the average user. This
can be obtained by ensuring the website has a clear and logical structure. The
website must have navigation elements to assist the user.

2. Accessibility
The website has several accessibility features for users when they access the
website. The website will be easily accessible to any user with an internet
connection or cellular data connection. This website will be compatible with
guests on all types of mobile devices. If the internet or data connection is slow,
alternate text will be provided for the images.

2.5. Database Requirements

1. Data Integrity
Data validation rules will be implemented to ensure that all data is accurate
and reliable. Data must remain consistent throughout the use of constraints.

2. Scalability
The database must perform within the performance metrics, even as the
amount of data grows progressively throughout the lifespan of the web
application. The database should be able to scale and handle different domains
being added to the system.

3. Performance
The required metrics for the database metrics have been outlined after
agreement between the development team and the client. The database must

12

be able to complete queries in under 4 seconds. The database must complete
GET, POST, PUT, and DELETE operations in under 4 seconds.

4. Design
The data must be designed in a way that will maximize the performance. The
database design should allow for collections to be connected efficiently.

2.6. Engineering Standards
As we developed our project, we made a point to follow a few key engineering
standards to help guide our design decisions, especially around how we structure
our APIs, handle authentication, and protect user data. Below are a few of the most
relevant standards we used, along with how they directly applied to different parts
of our system. These standards helped ensure that what we were building wasn’t
just functional, but also secure, reliable, and in line with industry best practices.

1. RFC 7231 – HTTP/1.1 Semantics and Content
This standard defines how HTTP methods like GET, POST, PUT, and DELETE
should behave, and how to handle things like status codes. Since our project is
built around a RESTful API, this RFC helped us shape how our endpoints work.
For example, we use GET to retrieve data, POST to create resources, and return
appropriate status codes like 200 OK or 404 Not Found when things go wrong.
Following this standard makes our API easier to understand and integrate with,
both for developers and tools like Postman or Swagger.

2. RFC 7519 – JSON Web Tokens (JWT)
We use JWTs to manage authentication in our app — when users log in, they
get a token that they can use to prove who they are on future requests. RFC
7519 defines how these tokens should be structured and signed. By following
this spec, we made sure our tokens are secure and follow a widely accepted
format. That way, even if our system grows or gets integrated with other
services later, our authentication approach won’t have to be completely
reworked.

13

3. NIST SP 800-63B – Digital Identity Guidelines
This is a set of security recommendations from NIST (the U.S. National
Institute of Standards and Technology) that focuses on how to safely handle
things like passwords and user login flows. Based on this guidance, we made
sure to hash all stored passwords using BCrypt, which adds both salt and
computational difficulty to resist brute-force attacks. We also enforce decent
password complexity and added rate-limiting to reduce the risk of automated
login attempts.

14

3. Project Plan

3.1 Project Management/Tracking Procedures

We will be using Agile as our project management style for this project. The primary
reasons that we decided on an agile approach were because of the flexibility,
incremental delivery, continuous improvement, and collaboration aspects. Having
independent tasks within our backlog is super important in software development. We
do not want to have dependent tasks that could be delayed because of unexpected
issues arising during development. We value the incremental delivery aspect of agile
because we plan on producing prototypes for our client before providing him with the
full version of the product. This ties into the continuous improvement aspect because
as we produce prototypes, we will improve our product based on client feedback. The
collaboration aspect of agile is excellent for software development. We have toned back
the daily standup meetings to once a week to check in with one another and discuss
the work we have done and plan to do.

We plan to track project progress using GitLab milestones. We have a GitLab
repository set up with an issue board and milestones that are dated with deadlines.
Inside GitLab, we have also set up a scheme for our branch setup to keep our code
organized, allowing for easier project progression due to simplicity. Git is an amazing
tool for software development because of its version control, and is the de facto
industry standard for all software development. It allows us all to collaborate on our
repository simultaneously and merge our progress together easily.

3.2 Task Decomposition

Frontend
The Frontend can be broken into two main tasks: the core HTML development and the
backend interactions. The core HTML development involves creating the design and
functionality of the web pages and focusing on the user experience. Completing the
core HTML functionality can be broken down into several steps. The initial steps were
to convert the client-provided Figma boards into functional HTML pages. Then,
allowing each of those pages to be navigated properly. After the basic web page
functionality is complete, additional functionality can be implemented. These
additional functionalities would include the login screens, all associated database
reporting screens, a facility management page with customization, modifying butterfly
data screens, and registering butterflies. The last main HTML feature is to optimize the

15

web pages for desktop and mobile devices. Implementing backend interactions is
required in order to access any data that is stored in the database. This will include
authenticating users, sending requests for butterfly reports, and checking butterfly tag
support.

Backend
The backend can be broken into several different services that need to be implemented
in the web application. The first feature is a user management system. This allows for
unique users to be created and stored in a database. Users can be later updated when
necessary. The user management system integrates JWT authentication to enforce the
permission scheme. A domain management system allows for multiple domains to be
added to the overall system. Domains will have their own separate butterflies and users
in the database. Users inside a domain can only access data that is related to their own
domain, except for the Super Admin, who can access data from all domains. The
Butterfly system will need a special universal tagging system. This tagging system will
be compatible with almost all existing domains’ tagging systems. Specialized queries
will also have to be created for butterfly sightings. Report generation will also be
implemented, which can be created based on parameters sent from the frontend. The
backend will be hosted on a cloud infrastructure–AWS. This means that the cloud
instance will have to be set up in a cost-effective manner that can still meet the
requirements.

Frontend + Backend
The front and backend share similar tasks to each other. The main set of tasks that are
shared is testing. This can include local development testing, manual UI testing, API
testing, and any additional testing. Code reviews and merge requests are required on
the front and back end as well. The final main shared task is to perform user testing
with the currently available features in the app with actual test users in the butterfly
domains.

16

3.3 Project Proposed Milestones, Metrics, and Evaluation
Criteria

Frontend
I. UI Design Completion

A. Metric: Percentage of originally requested designs successfully converted to
functional HTML.

B. Milestone: Complete the conversion of 100% of requested views into
functional HTML components.

II. Responsiveness

A. Metric: Whether a view is able to adapt to different screen sizes and aspect
ratios while adequately displaying content.

B. Milestone: Ensure all implemented views adapt effectively to various screen
sizes, including desktops, Phones, and Tablets.

III. Compatibility

A. Metric: Compatibility tests pass rate across target browsers.

B. Milestone: Ensure our designs achieve a 100% pass rate in compatibility tests
across major browsers, including Chrome, Firefox, and Safari.

IV. Functionality Development

A. Metric: Percentage of interactive elements from the design that function as
intended.

B. Milestone: Ensure all interactive elements are fully functional and have
corresponding tests written.

V. Accessibility

A. Metric: Number of Web Content Accessibility Guidelines (WCAG) criteria met,
as defined by W3C.

B. Milestone: Achieve an 'AA' level of accessibility by implementing the required
WCAG guidelines.

VI. Client Acceptance

17

A. Metric: Level of client satisfaction with the design as measured through
feedback.

B. Milestone: Achieve full client satisfaction with all designs, with no further
changes requested after review.

Backend
VII. API Development and Integration

A. Metric: Percentage of API endpoints developed, tested, and documented.

B. Milestone: Implement 100% of API endpoints outlined in the project
requirements, with thorough integration tests for each endpoint.

VIII. Database Performance and Optimization

A. Metric: Average database query response time for data visualization features.

B. Milestone: Achieve a response time that is at least 50% faster than the
previous design while maintaining equivalent end-user functionality.

IX. Tagging Adaptability

A. Metric: Capability to integrate specific butterfly tagging systems into the
database.

B. Milestone: Successfully incorporate all widely used butterfly tagging systems
adopted by major institutions.

X. Security Compliance

A. Metric: Number of security vulnerabilities identified and remediated (tracked
via penetration testing or security audits).

B. Milestone: Resolve 100% of critical vulnerabilities, aiming to avoid common
security risks outlined by OWASP guidelines. Ensure that, to the best of our
abilities, protections are in place against vulnerabilities such as broken access
control, injection, cryptographic failures, and others.

XI. User Data Management and Compliance

A. Metric: Compliance with data protection standards as outlined in the GDPR
(General Data Protection Regulation) and CCPA (California Consumer Privacy
Act).

18

B. Milestone: Achieve compliance with data privacy and protection standards,
ensuring that all user data is encrypted and anonymized where applicable.

XII. Error Handling and Uptime

A. Metric: Number of errors that impact user experience or server uptime.

B. Milestone: Implement logging and monitoring systems to ensure that the
number of critical errors impacting user experience or server uptime remains at
a minimum.

XIII. Data Safety and Recovery

A. Metric: Risk of data loss in the event of a system failure.

B. Milestone: Implement robust data backup procedures to ensure that no
critical data is lost during a system failure. Validate backups and confirm the
ability to recover data in the event of a failure.

3.4 Project Timeline/Schedule

3.4.1 Gantt Chart Tasks (Semester 1)

Figure 3.4.1 (Semester 1 Gantt Chart)

19

Converting the provided Figma board into HTML and CSS using a tool called
PxCode. PxCode is a free tool that provides functionality for exporting Figma pages to
HTML pages. Once pages have been exported to raw code, correct responsiveness,
styling, page resizing, and page functionality must be implemented.

Creating the database management schema first involved brainstorming ideas for
database collections and the overall layout. After 2 group meetings, we were able to
design a database structure that worked for our data types and use case and began
implementation.

When we were creating the database objects, we first created each collection with
the object structures in mind. Then we defined each object and the parameters
associated with the object in detail. This allowed us to have a baseline of what each
object would look like and how to store them.

Containerization of application components is important for our hosting
environment and the simplicity of use. We will create a container for both the front and
back end components to be easily deployed onto our VM instance.

Mapping the backend to the database required us to structure the backend
according to the database collections and object structures. We were able to define
object parameters within the backend code to match the database structure. In order to
confirm correctness, we created test requests to the database.

Multi-page navigation is not a feature of the PxCode Figma to HTML export. We will
have to connect each HTML screen through JavaScript to ensure a proper user
experience and application functionality. This also includes user interaction
functionality with buttons, input fields, and more, which are not supported in the
PxCode export.

Our butterfly tagging system needs to be adaptable to any facility using the
application. This means each screen that allows for tag inputs must adapt to the
facility’s configured tagging scheme. UI components should be simple and
straightforward for guests to use. Creating backed requests for sighting butterflies with
a simplified methodology for any tagging definition is required for the overall
functionality of the application.

The database query system was a complex task that took a lot of optimization and
testing in order to meet the performance requirements. We first created baseline
queries for our data needs and then optimized them through aggregation, giving us
much faster response times on our requests.

20

Designing the backend API for proper functionality is crucial to our application's
functionality. Controllers for each of the main collections (users, butterflies, species,
and domains) were created with unique endpoints for the needed functionality. API
endpoints were generalized and reused whenever possible to keep the complexity of the
backend to a minimum. All request endpoints were tested in Bruno before being
introduced into development on the frontend.

Creating the website data views required us to implement a user hierarchy within our
UI where the admin has access to all of their facilities' data. We implemented a
controller in the backend for the frontend to communicate for all data report types. The
dynamicness of this communication was complex, but efficient. Upon making these
requests, we implemented response handling to correctly display data in an orderly
fashion. This view allows for data filtering and sorting for any of the user's needs.

Our first prototype was a baseline product that we presented to the client. This
included a full guest user functionality with the front and backend linked and the
application hosted on a live server. This demonstration allowed us to get feedback on
design and functionality from our client and gave us a good starting point when
resuming the project in the following semester. From this prototype, we iteratively
improved on the functionality and continued to demonstrate new functionality to the
client.

Adding other facilities to our application required us to create a dynamically
adjusting application design based on the tagging system set up by the facility admin.
When setting up a facility, the admin has the option of adding foreground colors,
background colors, background shape, type of input characters allowed, and dots to
their tagging parameters. This implementation covered the majority of cases for tagging
systems. We also added the ability for admins to create authenticated accounts under
their facility for trusted individuals. Authenticated admins of the facility can then
register and access butterflies unique to their facility.

3.4.2. Gantt Chart Tasks (Second Semester)

21

Figure 3.4.2 (Semester 2 Gantt Chart)

Figure 3.4.3 (Semester 2 Gantt Chart Key)

Frontend
Figma Board Finalization was our first priority when starting the semester. This
included refining all exported screens from the provided Figma board to include the
proper styling for desktop and mobile devices, along with the correct UI functionality
for users. This was a requirement before we started implementing request functionality
for individual screens.

Database Screens/Reporting Screens required us to implement a user hierarchy
within our UI, where the admin has access to all of their facilities' data. We
implemented a controller in the backend for the frontend to communicate for all data
report types. The dynamicness of this communication was complex, but efficient. Upon
making these requests, we implemented response handling to correctly display data in
an orderly fashion. This view allows for data filtering and sorting for any of the user's
needs.

Navigation and screen linking not only include page routing, but also variable
management with our user hierarchy. Implementation includes functional navigation to
all pages as well as storage of required information on the frontend throughout all pages
for any user. Using this, we created an easy-to-understand flow of the web application
for any user.

Custom request implementation for individual pages was needed for proper
end-user functionality. This included mostly administrator features that needed more
than just simple GET requests. Customizing the user experience was also impacted by

22

the backend request implementation for unique user login requests. Most of our
existing endpoints got additional functionality for catering to multiple/facilities.

JWT Authentication required us to securely store and utilize the JWT token returned
to the user upon logging in to their authenticated account or entering the website as a
guest. JWT tokens were added in each request header to ensure security in the
frontend.

Iteratively testing the UI with users helps us deliver a more refined final product. We
have continuously updated deliverables for our client to constantly provide us feedback
on design and functionality. As the project has reached a more polished final
deliverable, the application has been distributed to more facilities for additional testing
and feedback.

Backend
AWS Integration was a key part of our project's final deliverable. Our client was
already using a personal AWS account for multiple services that the Reiman Garden is
hosting. Gaining access and configuring our application to be deployed on an instance
that is administered by our client is a core functionality we implemented for the best
end-user experience. The AWS was also integrated with our GitLab CI/CD pipeline for
automatic deployment of both the frontend and backend.

One of the core features our client requested was importing the previous database
information from the current application they were using. This should fit seamlessly
into our application hierarchy and work with all our features. Importing was done by
exporting the current database information into a JSON document and then
individually importing each of the sighting entries into our new database schema.

Security was absent in the previous implementation of this project. We chose to
implement JWT token authentication for our authenticated users. This added
authentication principles to each of our API endpoints to ensure no malicious users had
access to the backend API. JWT authentication is done on the landing/login page for all
users and is integrated properly with the guest user experience to ensure their
functionality remains the same without needing an authenticated account.

Database exporting was simply implemented, where whatever data is currently being
displayed to the authenticated admin user will be exported to a CSV file and
downloaded to the user's device. This created an easy, streamlined operation to export
generated reports on data in order to make graphical items to display the data.

Optimizing database queries was a lengthy task that required a lot of trial and error.
We first created baseline queries for our data needs and then optimized them through

23

aggregation, giving us much faster response times on our requests. This helped us to
meet the performance requirements given to us by our client.

For user management features, we implemented the ability for users to change their
passwords as well as create their own unique username that will be associated with all
of the sighting data they entered.

Domain management features required us to implement extra permissions for
facility admins such as: creating and deleting users, registering new butterflies, marking
dead butterflies, generating reports on data specific to their facility, and monitoring
sighting data for incorrect sighting data.

Images for butterfly species were stored in an external, digital ocean database created
by a previous group. We used a base URL that allowed base access to their images and
simply appended the butterfly species to the end of the URL + .jpg to access the correct
image. Any new species that is added to our system must also have an image added to
the other project that is still being used for a different purpose by the facility, otherwise,
a default image of a butterfly is used.

3.4.3. Deliverable Dates
Week 4: Initial Concept and Design Review

Week 8: Present responsive screens to the client

Week 15: Initial prototype with minimal functionality

Week 22: Second prototype with improvements based on client feedback

Week 26: Third prototype with improvements based on client feedback

Week 31: Finalized product

3.5 Risks and Risk Management/Mitigation
1) Convert Figma Board to HTML

a) Risk: Views may not easily convert from Figma to HTML.
i) Probability: 100%

(1) We were already experiencing these issues and had seen this
issue in the past.

24

ii) Mitigation Strategy: Begin conversion early in the project to allow
sufficient time and resources for completion.

iii) Result: We did encounter problems while converting the Figma board
screens, but were able to navigate through it. Lots of duplicate code was
auto-generated and had us doing lots of cleanup. This slowed down
progress and pushed back milestones due to us sticking with the plan
of using the Figma board.

b) Risk: Views may not be fully responsive or accessible as planned.
i) Probability: 100%

(1) The exported views from Figma have never been fully responsive
in our experience. This could be due to poor Figma design.

ii) Mitigation Strategy: Focus on achieving WCAG AA accessibility
standards and conduct regular checks to ensure designs are adaptable
to target screen sizes.

iii) Result: The views were not fully responsive when we exported them, as
expected. However, we were able to alter the CSS of the views to
become fully responsive to all device sizes.

2) Create Database Objects
a) Risk: Initial database objects may lack sufficient fields or functionality to meet

project needs.
i) Probability: 75%

(1) We are unsure if we will need to restructure the data or add
more fields to our data objects. We decided that from past
projects, it is likely that we will need to change the structure of
database objects in some capacity.

ii) Mitigation Strategy: build out a thorough list of all data points that
need to be stored and get each of those data points with their
constraints to be officially signed off by our client.

iii) Result: Our initial objects lacked fields that enabled full functionality
of the application. We were able to update objects through team
discussions and decide on the most efficient ways to update our
database objects.

b) Risk: Containerizing the app may be more complex than expected.
i) Probability: 50%

(1) We have never containerized an application before, so we are
unsure of the exact complexity of this task. We set our
expectations high for complexity and think it could go either
way of being more or less complex in actuality.

ii) Mitigation Strategy: Conduct early research to verify the compatibility
of components and ensure they integrate smoothly into a container.

25

iii) Result: We ended up being able to do this relatively easily, and this was
not an issue for us. We went through tutorials prior to containerizing
the application in order to make this happen.

3) Database Query System / Map backend to the database
a) Risk: Database performance may not meet client requirements.

i) Probability: 80%
(1) Our client is looking for an extremely fast database and data

generation system, which we think may not be possible due to
budget constraints for our resources.

ii) Mitigation Strategy: Optimize the database structure and create
indexes for high-demand queries. Track other potential optimizations
during database creation to maintain performance.

iii) Result: This was a problem early on in our project; however, through
much optimization and testing of ways to query the database, we have
met our client's performance needs.

4) Multi-Page Navigation
a) Risk: Pages may not be easily navigable.

i) Probability: 60%
(1) As a developer, the site navigation will make sense to you

because you made it. However, in past experiences, we know
that it is slightly more likely than not that the navigation will
not be as intuitive as we first thought, based on user feedback.

ii) Mitigation Strategy: Test the navigation design with potential users to
verify ease of use and page hierarchy effectiveness.

iii) Result: This was a minor issue in our initial user testing, but through
feedback, we were able to make the page navigation intuitive for our
users.

5) Butterfly Tagging System
a) Risk: The System may not support all common butterfly tagging methods used

across sites.
i) Probability: 70%

(1) It is likely that an exhibit will use a tagging system that no one
thought of, and we will not be able to account for it. Although
for common tagging systems, we think we can cover most of
them.

ii) Mitigation Strategy: Consult the client and potential site owners
about their tagging methods and ensure the system can incorporate all
identified methods.

iii) Result: Early on, our solution was only able to cover about 70% of
tagging systems. However, we were able to design a system that allowed
for almost any tagging system that you can think of for a butterfly. We

26

are confident that we have covered 99% of cases according to our
client's instructions on how facilities tag butterflies.

6) Design the Backend API
a) Risk: Backend APIs may lack adequate security.

i) Probability: 50%
(1) Our original backend layout will not be heavily focused on

security, so it is likely that we will need to add more security
measures in later iterations of the backend APIs.

ii) Mitigation Strategy: Stay aware of common security risks and
implement safeguards, including minimizing stored user data and
maintaining regular backups for data integrity.

iii) Result: We initially designed our application without a focus on
security or user authentication. This was addressed later in the
development timeline, where we added user authentication and
adequate security measures to our backend APIs.

b) Risk: The Initial API list may not cover all required software functions.
i) Probability: 100%

(1) We have created the list of the original API functions that we
will need, but from past experience, you will never get
everything on the first try.

ii) Mitigation Strategy: Design APIs with extensibility in mind, allowing
the team to add new functionality as needed.

iii) Result: We had to add APIs as the project went along. This is expected
in all software projects, as you can not account for what you do not
know. This was not an issue for us and is a normal part of development.

7) Create Website Data Views
a) Risk: The System may struggle to display complex data views efficiently,

potentially affecting performance and data accuracy.
i) Probability: 70%

(1) The data will be complex, and we will likely struggle to
efficiently query it due to the dynamic nature of the data.

ii) Mitigation Strategy: Conduct performance testing for data-heavy
views, consider pre-aggregating data to reduce load, and implement
pagination for large datasets. Gather user feedback early to improve
clarity and usability.

iii) Result: Displaying the butterfly tags turned out to be a major issue and
something that we spent a lot of time on. We decided to go with a
solution that displays the tags with their colors and alpha codes all
together as it would appear on the butterfly for simplicity. We found
this design to be the optimal solution for the problem.

27

8) First prototype
a) Risk: The Initial prototype may not align with client expectations, resulting in

delays due to rework.
i) Probability: 80%

(1) We expect to receive constructive feedback from our client
along with more features he thinks of as he is testing our
prototype.

ii) Mitigation Strategy: Hold frequent, iterative feedback sessions with
the client and conduct regular checkpoints to integrate feedback
progressively, reducing the need for major adjustments.

iii) Result: We had to make adjustments to the application based on the
feedback we received, but it was nothing drastic. The changes we had to
make mostly included quality-of-life changes for our client and the
users.

28

3.6 Personnel Effort Requirements
Below is the projected amount of effort for each task and subtask, along with an explanation of
why we projected the amount of effort needed to complete the task.

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are clunky
and require a lot of
rework to function
properly.

Multi-Page navigation 10 Properly linking the
web pages requires
meticulous iterations
and testing to ensure
all links work.

Facility management
pages

20 The pages to update a
facility's web page will
be complex and
require many different
features to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t
be too complicated on
the HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a
lot of optimization and
rework.

Frontend-to-Backend
Interactions

User sign-in
implementation and
authentication

15 Ensuring the sign-in is
secure and cannot be
exploited is a delicate
process requiring time.

Butterfly tagging
support

15 Implementing tag
posting and spotting
will require complex
interaction with the
backend.

Graphical data views 20 Creating useful and
streamlined displays
will require advanced

29

methods we have not
yet explored.

Butterfly data filtering
and sorting

15 Ensuring that the
filters and sorting
methods are efficient
and effective will
require a deep analysis
of the data and
structure of the
database.

Unique butterfly
tagging for each
facility

15 Allowing facilities to
utilize various tagging
methods requires great
consideration of the
possible methods and
how to allow for them.

Database collection
and Layout

Create a Database
Management Scheme

15 Creating a scheme that
can effectively manage
all of the data requires
a lot of research and a
deep understanding to
meet the needs
properly.

Create database
objects

15 The objects are
essential to the
structure of the
database and may need
to be reworked if not
done correctly the first
time.

Containerization 15 Complex and requires
proper
implementation to
improve performance.

Map backend to the
database

20 Involves setting up
complex database
connections to the
backend, which can
cause efficiency issues
if not properly
mapped.

Design the backend
API

20 Very important
interfaces for the front
end to interact with

30

that must allow for
scalability.

User Testing Test the website with
the facility operators

5 Distributing the
website and gathering
feedback from the
employees of Reiman

Test the website with
guests and the general
public

5 Gathering feedback
from the public
utilizing surveys

3.6.1 (Projected Effort Table)

Below is the actual amount of effort put into each task and subtask, along with an explanation
of why there were differences.

Task Subtask Expected Effort
(Person-hours)

Actual Effort
(Person-hours)

Explanation of
differences

Core HTML
Development

Converting Figma
boards to
functional HTML

20 40 We knew the Figma
board would not easily
convert, but we had to
rework every single
page, which was not
expected.

Multi-Page
navigation

10 10 We were correct in our
prediction, and we did
not run into any issues
while working through
site navigation.

Facility
management
pages

20 10 This was much simpler
than expected because
we were able to take
the facility set up page
and rework the request
to do an update
instead.

User log-in pages 5 5 The development of
the login pages was
simple as expected.

Mobile device
optimization

10 20 We had to rework
every screen for
mobile optimization,
some more difficult
than others. We did

31

not expect to have to
do every screen.

Frontend-to-Back
end Interactions

User sign-in
implementation
and
authentication

15 10 Despite no experience
with JWT tokens, the
process was simple
and easily
implemented into our
design.

Butterfly tagging
support

15 15 Accurate prediction
due to the complexity
of making a dynamic
view, accounting for all
tagging systems.

Graphical data
views

20 40 This was much more
complex than expected
and caused us lots of
issues when trying to
efficiently display large
amounts of data.

Butterfly data
filtering and
sorting

15 30 We had a lot of query
optimization that
needed to be done in
order to meet
performance
requirements.

Unique butterfly
tagging for each
facility

15 25 This took longer than
expected due to
adjusting our database
objects to account for
all tagging systems.

Database
collection and
Layout

Create a Database
Management
Scheme

15 15 This took as long as
expected to plan and
set up our database
management scheme.

Create database
objects

15 25 Adjustments of
database objects had
to be made as we
implemented
functionality into the
application.

Containerization 15 15 Expected amount of
time, as we were aware
of the complexity.

32

Map backend to
the database

20 35 Ran into lots of
efficiency problems
and had to rework
many of the queries to
meet performance
requirements.

Design the
backend API

20 20 We expected this to be
ongoing development,
and the amount of
effort was to be
expected.

User Testing Test the website
with the facility
operators

5 10 We spent more time
with our client and
users in terms of
receiving feedback and
having the application
tested.

Test the website
with guests and
the general public

5 5 Our application was
being tested for much
more than 5 hours, but
feedback gathering
was around the
expected amount of
effort.

3.6.2 (Actual Effort Table)

3.7 Other Resource Requirements
The main resource requirement for our project would be hosting the service for our
client on AWS while using GoDaddy for DNS management. This hosting service will be
used to configure and control the status of the web application and make it available
and easy to use for the client. Other external resources being used are MongoDB and
Java Spring for the backend and database implementation. Java Spring is a free service
that we are utilizing to secure CRUD requests between the front end and the database.
Next would be the implementation of the database using MongoDB, which is a
non-relational collection-based database. Here, we will store collections for each
facility and track their specific tagged butterflies. We are also required to call a
previous team's image database in order to pull the images of all of the butterflies.
Lastly, we are implementing Docker so our client can control all services from a single
place. This includes the cloud hosting through AWS and the backend service

33

implementation through a VM. Docker is a service offered by AWS, so integration will
be quick and easy.

34

4. Design
4.1 Design Context

4.1.1 Broader Context

Area Description Examples
Public health,
safety, and
welfare

Our project will directly impact
butterfly exhibit employees as they
will be implementing it into their
facilities' everyday use. The project
can improve the employees' welfare
directly by improving already
existing processes and making
everyday tasks more efficient.

Reduce data report generation
time.

Enhance data into useful
statistics for facility owners.

Global, cultural,
and social

Our project aims to adapt to
butterfly curators across multiple
facilities and meet their needs.
Multiple features of the website have
been created specifically to meet the
needs of those who are experienced
in the field and provide them with
useful information.

Inaccurate data or information
about butterflies could result in
harmful changes to the
butterflies' treatment routines.
Creating a tagging system that
can work for each individual
facility to generate useful data
on their butterflies.

Environmental Our project can affect the population
of butterflies by changing the way
that different facilities care for them,
by providing detailed information.

Decrease the number of
butterflies in an atrium.
Change the plants used in the
atrium to maximize butterfly
health, leading to longer living
butterflies.

Economic Our project can reduce costs to our
client by increasing efficiency in
already existing processes and
improving care methods for the
butterflies.

Improved tagging efficiency
leads to less wasted time for
employees.
Reduced hosting costs of the
application without sacrificing
performance or availability.

Table 4.1.1 (Broader Context Table)

4.1.2 Prior Work/Solutions
Monarch Watch App: The closest existing application we could find to what we are
currently developing. This app is used to track specifically monarch butterflies as they
travel across the world. This is a paid service that allows people around the world to

35

collaborate to track the path of monarch butterflies as they migrate. For more about
the app, see [1].

Pros:

1. Easy to use
2. Provides accurate migration information
3. Allows for multiple users to work together

Cons:

1. Requires payment
2. Does not provide detailed data
3. Only used by one organization to track one species
4. Built for long-distance use

Solar-powered radio tags: Solar-powered radio tags and RFID tag combinations are
close to being applied to butterflies. Currently, a small group is testing this technology
with butterflies in the wild. This would allow for the automation of the detection and
tracking of butterflies without manual entry from visible tags. For information about
these tags, see [2].

Pros:

1. Precise tracking ability
2. Automated tracking
3. Low weight of 0.06 grams

Cons:

1. Not currently available on the market
2. Expensive
3. Still untested and could have issues

Small RFID Tags: Currently, some of the smallest RFID tags could be small enough to
use on butterflies. Unfortunately, these tags have a very small range and high costs.
“Smaller tags have a shorter read range since they cannot capture as much energy from
a reader antenna.” For more information about the size and range of small RFID tags,
see [3]

Pros:

1. Automated tracking
2. Small enough to be used on most butterfly species

Cons:

36

1. Expensive
2. Low range

Previous Project: A previous project to make a similar system was created a few years
ago by a different senior design group from computer science. This project has
functioned as a baseline, but it has many underlying issues that plague the site and
need to be addressed. The client has requested that an entirely new website be created
to replace the old system.

Pros:

1. Free
2. Sticker method of tracking

Cons:

1. Hard to navigate
2. Long load times
3. Missing polish
4. Missing needed features

4.1.3 Technical Complexity
This type of application does not currently exist in the industry; facilities commonly
use CSV files to store information that is entered manually. All reporting data is
challenging to report on, and no cross-facility data is being shared or utilized. Our
application addresses this need for any facility to have a standardized way of entering
data and reporting on it, with the additional advantage of comparing data across
facilities.

The system has three components similar to any other software web application.
Complexity grows when implementing a custom frontend for any number of facilities
that utilize the application. This needs to be adaptable and provide growth for when
we are no longer developing. Creating a way that each facility can have its own UI,
along with tagging logic, increases the complexity of the project. Having all the data
stored in one location provides an easier way to report on data from multiple facilities,
but calls for strong logic and reporting options for users due to tagging system
implementations. Taking raw sighting data and displaying it dynamically to
administrators and researchers to a point where they can derive conclusions is the end
goal of the project.

37

This requires extensive frontend development experience to be able to create a quick
and easy-to-use application that is also scalable for any facility. Providing adaptive new
endpoints through quality dynamic code poses challenges on the backend, which will
manage any number of facilities that use the application. Database expertise is
required not only to design and implement a multi-facility database but also to query
and display information in valuable ways. This project requires experience from an
extensive list of software technologies and systems, whereas usually, a developer
focuses specifically on a single expertise or technology.

4.2 Design Exploration

4.2.1 Design Decisions
Butterfly Longevity Project – Figma This board contains all UI designs and the
connection between each screen. This is important because we need to ensure that the
screens have all the necessary functionality for the client's needs. We also need to
ensure that they are in locations that would make sense to our clients and the users.
This is arguably the most important design aspect of our project as it directly affects
user experience in every way. You can not recover from a bad UI design. We have
presented this Figma board to our client and have gotten approval.

MongoDB Atlas: Cloud Document Database | MongoDB We decided to use MongoDB
as our database, which is a very important decision for our web applications'
performance. This decision was important because it will directly impact how long it
takes to load and query data. For our data types and the amount of data our database
will store, we will benefit most from using MongoDB. MongoDB is very flexible and
great at handling a dataset that will continue to grow without losing performance,
which is a main concern of ours.

Cloud Computing Services - Amazon Web Services (AWS) We decided to use AWS to
host our web application, which is very important to our application's availability. AWS
offers high availability (99.999%), making it extremely reliable for our client and for
the other users. AWS also allows you to upgrade your plan at any time in order to
account for a higher amount of traffic. This allows our product to scale and have no
performance issues. It is also very cost-effective in comparison to other options and is a
pay-as-you-go price model, meaning we can cancel the service at any time.

4.2.2 Ideation
To decide on what database to use, we first looked at all of our data that would need to
be stored within the database. Next, we estimated which data sets would have

38

https://www.figma.com/design/kKdl7bobrSEb2r4cPVb5ya/butterfly-longevity-project?node-id=0-1&node-type=canvas&t=ayIERVCocIqpyb87-0
https://www.mongodb.com/lp/cloud/atlas/try4?utm_source=bing&utm_campaign=search_bs_pl_evergreen_atlas_core_prosp-brand_gic-null_amers-us_ps-all_desktop_eng_lead&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=415204521&adgroup=1208363748749201&msclkid=c541151512fb18ba55237236f7facdfc
https://aws.amazon.com/

exponential growth and which would remain similar in size as time goes on. We also
listed performance and scalability as two of our most important features in the
database. We chose those two traits specifically because our client's previous product
had struggled with that, and we were looking to improve on the previous design. Our
five considerations and why we chose to use/chose not to use them are as follows:

MongoDB (Using):

 Pros

1. Flexible data schema
1.1. Allows for easy changes in data collections

2. Allows for scalability of data size without a tradeoff in performance
3. High-performance speeds

3.1. Fast querying speeds
3.2. Fast retrieval speeds

4. Very little to no cost

 Cons

1. Does not support traditional SQL joins
1.1. Can lead to limitations in querying

2. Potential redundant data
2.1. In turn, increasing storage costs

MySQL (Not using):

 Pros

1. High performance speeds
1.1. Fast querying speeds
1.2. Fast retrieval speeds

2. Built-in security features
3. Supports vertical scalability

 Cons

1. Does not support horizontal scalability
1.1. i.e., adding traits to a data type

2. Lack of schema flexibility
3. Limited JSON support

Oracle (Not using):

 Pros

1. High performance speeds
1.1. Fast querying speeds
1.2. Fast retrieval speeds

2. Multi-platform support

39

2.1. Available on Windows, Linux, Unix, and more
3. High scalability without performance tradeoffs

 Cons

1. High costs
2. Resource intensive

2.1. Significant demand of CPU
3. Built for enterprise applications

IBM DB2 (Not using):

Pros

1. High performance speeds
a. Fast querying speeds
b. Fast retrieval speeds

2. Supports XML and JSON formatted data types
3. High scalability without performance tradeoffs

 Cons

1. High costs
2. Complex setup and features in order to make the most of the application
3. Low flexibility of data schemas

MariaDB (Not using):

 Pros

1. Open source and free to use
2. Compatible with MySQL
3. Flexible storage engines

 Cons

1. Lacks advanced features that can improve performance
2. Low performance with large data sets
3. Lacks professional support, and there are not a lot of resources out there on the

product

4.2.3 Decision-Making and Trade-Off
We created a weighted decision matrix to make a final decision on which database we
would utilize for the project. We prioritized the performance and scalability of the
platform first, as the previous project struggled with performance issues and could not

40

handle a large amount of data. Flexibility and cost are also important factors because of
the vast range of data that needs to be stored and the low budget needed to keep the
project running.

Weighted Decision Matrix (Scores range 1-10)

Database Performanc
e (25%)

Scalabilit
y (25%)

Flexibility
(20%)

Cost
(20%)

Querying
Support
(10%)

Total
Weighted
Score

MongoDB 9 9 9 10 7 9

MySQL 8 6 5 10 8 7.3

Oracle 9 9 6 3 8 7.1

IBM DB2 9 9 4 4 8 6.9

MariaDB 7 5 6 10 7 6.9

Table 4.2.3 (Weighted Decision Matrix)

Based on the scores of the table, we decided MongoDB was the best fit for our project
after receiving a score of 9. Some of the following factors affected our decision and how
we scored the databases.

Scalability: Horizontal scalability in MongoDB is a large advantage when handling
large amounts of data that will only grow over time. We expect the database could
contain many years of butterfly data that could cause issues on other platforms.

Flexibility: MongoDB allows for a very flexible schema structure that suits our needs,
allowing the database to adapt as the project evolves without requiring complete
restructuring.

Cost: Since MongoDB is open-source, it offers a great cost advantage over most other
options, such as Oracle and IBM DB2, which require licensing and resource costs.

Performance: MongoDB’s fast querying and retrieval speeds address previous
performance issues the previous group has experienced, making it an even stronger
candidate for our use.

Retrospect: MongoDB was not the ideal database for us, and we would have benefited
from using a relational database like MySQL. However, since we realized this so late
into the project, we were not able to make adjustments to our database and had to

41

stick with MongoDB, which is still a viable solution. The reason that a relational
database would have benefited us is mainly through our database querying
performance. We had to do quite a bit of extra work in order to make MongoDB
perform at the level expected from our client in terms of data retrieval.

4.3 Final Design

4.3.1 Overview
We designed a web application that is user-friendly, fast, and reliable. The system is
designed to deliver a smooth experience for anyone accessing it through a browser,
whether that be on their phone, laptop, computer, or other devices. Users will be able
to scan a QR code provided by the butterfly exhibits to access their uniquely
customized site.

For our frontend, we build the user interface using HTML, CSS, and JavaScript. These
technologies give us an easy way to create responsive pages without the use of external
frameworks. Our site is lightweight, custom-designed, and easy to navigate.

When it comes to the backend, this is where we handle all of the logic related to data
management and communication with the database. We opted to use Java Spring, an
established, powerful tool that helps us to manage all of our application requests to the
database. This layer allows for efficient communication between the frontend and the
database. However, for images of butterflies, we utilize an external database associated
with a previous project that is located on DigitalOcean. This will ensure that there is
no confusion on imaging, as the other application already has the butterfly images.

To test our backend APIs, we utilize a tool called Bruno that allows us to make mock
requests. Bruno provides us with an easy way to test new APIs and their performance
as we are developing and altering the backend and database.

Our database is powered by MongoDB, a flexible database that helps with the
dynamicness of our data. It securely stores all data and ensures that only authenticated
users can access it. MongoDB provides us with easy access to update data at any point
and monitor data as we integrate legacy data with our current database.

In order to make the application accessible, we have used Amazon Web Services (AWS)
to host the website. This ensures that our web application is online, secure, and can
scale with demand. On top of this, we are using GoDaddy to manage our domain
name, which is how people will find the website. This allows us to create a relevant
domain name that is easy for guest users to find and associate with us.

42

Figure 4.3.1 (Database Structure Diagram)

4.3.2 Detailed Design and Visual(s)
Frontend

The front-end implementation of the project is not using a framework such as React or
Angular. Instead, it is written in pure HTML, CSS, and JS to mostly due to the Figma
board code extraction we went through. All UX design follows the Butterfly Longevity
Project Figma board, which can be found at the following link: Butterfly Longevity
Project Figma.

PxCode is a tool used to generate HTML code from Figma boards. We utilized this to
generate HTML code for each view that is presented on the Figma board. This leaves us
with 14 generated views, so 14 generated HTML, CSS, and JS code files. A few views
from the Figma board could not be easily containerized and were later manually
created for the system. These views would include the database spreadsheet view and
the admin home page setup view.

The code was then optimized to resize correctly to mobile, tablet, and desktop views of
the web app. The main point of reference is through CSS files and styling guides,
ensuring that top-level containers rely on viewport height and width rather than a
pixel amount of some other variable identifier. Furthermore, low-level containers
needed custom styling from developers to ensure proper function for all screen sizes.

43

https://www.figma.com/design/kKdl7bobrSEb2r4cPVb5ya/butterfly-longevity-project?node-id=0-1&node-type=canvas&t=PUxa5pwWe6832WzG-0
https://www.figma.com/design/kKdl7bobrSEb2r4cPVb5ya/butterfly-longevity-project?node-id=0-1&node-type=canvas&t=PUxa5pwWe6832WzG-0

Guest Experience: As defined before, a guest user is someone who is visiting the
butterfly enclosure and will be entering butterfly sightings through a mobile device.

Upon creation of a facility, admins are given a unique URL for guests in the form of a
QR code. QR codes are standard for what the Reiman Gardens have been using.

Figure 4.3.2-1 (Guest user URL and QR code on facility screen)

The coordinator who is letting guests into the butterfly enclosure will prompt all
guests to scan the QR code and encourage them to utilize the application. Once a
guest has entered the site, it will automatically be customized for the facility they are
at per the unique URL they are given. The following flow is what a guest user will
experience when utilizing the application.

Figure 4.3.2-2 (Guest user page flow)

Users enter the application by providing their name, which is then linked to their user
object, and they are identified as a guest. Guests are then prompted to enter a butterfly
tag that they see within the enclosure. This page dynamically adjusts the tagging entry
system to the facility they are at (changes entry functionality based on tag structure).
The user is also prompted with a guide image that the facility selects upon creation to
understand how to tag their specific butterflies.

44

Once a butterfly is tagged, the guest user will be shown a picture of the butterfly
species along with some short information about the butterfly. Upon a successful
sighting, the sighting is entered into the database for that facility.

Docent Experience

A Docent's experience is the same as a guest's experience, but rather, they will not log
in with the QR code. Docents will have an authenticated account, which was made by
the facility admin, to log in to. Docents then tag butterflies the same way as guests, and
will be given some extra information about the specific butterfly they tagged (number
of times sighted and how long the butterfly has been alive).

Admin Experience

An admin experience is far more complex than that of the guest experience. Admins
will log in to their facility through an authenticated user account and be presented
with a large amount of information.

Figure 4.3.2-3 (Admin Home Page View)

From here, admins are able to control and configure their facilities application. They
are able to enter sightings the same way a guest or docent would. They are able to
register new butterflies by selecting a tag and species before releasing them into their
enclosure. They are able to mark butterflies that have died within the enclosure, along
with the data that they were found dead. They are able to access their facilities'
sighting data, along with generating reports based on that data. They are able to
update their facility information, which includes user images, logos, descriptions, and

45

more. They are able to create user accounts for their facility for either docents or other
admin users. Lastly, they are able to import previous butterfly data into their facilities
database.

Figure 4.3.2-4 (Admin Access Data View)

The most important part of the Admin experience is viewing their sighting data. From
here, they can apply filters to all sighting reports of any butterfly within their facility.
They can also see statistics on their sightings based on the filters they select.

Note: Super Admin accounts are the same as regular admin accounts with slightly
more control. Super Admins have the ability to create other facilities, as well as access
data from all facilities that are using the web application. Reports have the additional
functionality to filter based on facilities or lists of facilities. Super admins also have the
ability to change butterfly species information for the whole web application.

See the video below (or the user operation guide) to fully understand the workflow for
Admin accounts.

 https://youtu.be/HrKjB3BT3NA

Backend

The backend is built using the Java Spring framework. The two main functions of the
backend are to communicate data from the database to the frontend and to take in
data from the frontend to store in the database. This is achieved by building a REST
API with support for GET, POST, PUT, and DELETE HTTP requests. The Spring

46

https://youtu.be/HrKjB3BT3NA

framework allows for a simple implementation of additional services as well, such as
authentication and database connection.

The Model classes in the backend define each of the main collections that are used in
the database, along with any connections between collections. The Model classes will
be created with respect to the client’s requirements for what data needs to be stored.
The Repository classes allow for definitions of queries on the database for a collection.
The Repository classes are created to query information from the database that a user
will need. The Controller classes are created based on the views of the frontend and
what information they are required to have or give. The Controller classes allow for the
HTTP requests to be made by the frontend to perform basic read and write operations
on the database.

Figure 4.3.2-5 (Butterfly Controller Method)

The following table entries map out all of the main API requests that have been
implemented for each HTTP request type. The requests utilize JSON for
communication (i.e., request and response type).

Get Post Put Delete

Get Facility Theme Login Request Update Facility
Theme

Delete Invalid
Butterfly Sightings

Get Facility Assets
(Logo, Tag
Method, etc.)

Post Butterfly
Sighting

Update Facility
Assets

Delete User
Accounts

Get Butterfly
information for a
specific facility

Create Facilities
and Facility Admin
Accounts

Update the
Admin Account
password or
information

Delete Facility and
Facility
Information

Get all butterfly Add a new Update the Delete/Remove

47

information with
specified filters

Butterfly Species butterfly sightings
information

Butterfly Species

Table 4.3.2-6 (API Request Table)

Database

MongoDB was selected to be the database to store all the information in. It is a
non-relational database, meaning that all information is stored in collections, which
follow a JSON format. The data is stored in four collections: Butterflies, Species, Users,
and Domains. The Butterflies collection refers to the butterflies that are registered to a
butterfly exhibit (domain). The Species collection is a list of all valid butterfly species.
The Domains collection refers to each individual butterfly exhibit that can house their
own butterflies. The Users collection holds each individual user with what domain
they belong to and which butterflies they have tagged.

Figure 4.3.2-7 (Basic Database Schema)

Due to the possibility of increased complexity and cost, all data is stored within the
four mentioned collections. Since all the data is stored together, a permission schema
has been created that will define the access rules for users and their domains. A
Domain_Admin can only access and modify information within their own domain. The
Domain_Admin cannot access or modify any information that belongs to another

48

domain in any case. The Super_Admin will not have any location or data restrictions.
They will have full access privileges to all data that is present in the database.

Figure 4.3.2-8 (Database Domain Example)

4.3.3 Functionality
Our design centers on two primary use cases: logging butterfly sightings into the
database and outputting and analyzing this sighting data. The app lets users easily
input butterfly tags, time, and other details depending on the user's role. These inputs
are stored in a database with a unique identifier for the butterfly exhibit for streamlined
analysis and retrieval.

Additionally, the app includes a robust user management system, allowing for varying
access levels based on user-authenticated roles. This ensures that different users, from
researchers to citizen scientists, have tailored access to the database and app features.
For example, while a facility administrator may access detailed data and analytical tools,
a casual user may only input sightings.

The design is also adaptable across institutions, enabling each to manage its own data
access policies and customize the user experience as needed. This flexibility ensures the
app serves diverse institutional needs, facilitating collaborative and secure data
collection across multiple organizations.

4.3.4 Areas of Challenge
Converting from Figma

The process of converting views from the Figma board to actual functioning HTML was
a lot more difficult than we initially expected. We ended up having to modify almost all
of the generated code, and many changes were needed to get the sites working properly.
This was partially due to the way the Figma board was created without consideration for
HTML development, making many of the groupings and elements entirely out of place,
requiring a lot of TLC.

49

Data efficiency

Making sure that all functions of the website that involve data calls meet our response
time requirements required a lot more time than we expected. Initial methods for
grabbing data were often very inefficient and had to be reworked on both the front and
back ends in order to bring load times down. This was challenging and required
learning more about how to efficiently work with large data sets while keeping the
interface user-friendly.

Database to Frontend formatting

When creating interactions between the frontend and backend, it often requires a lot of
discussion to reach the best solution for data formatting. This is due to the fact that
many of the backend functionalities require very detailed and precise information for
their in-depth data structures, while the frontend would be taking in base-level user
input most of the time. We often had to discuss and find a middle ground where both
sides could function efficiently in order to meet the requirements of both sides.

4.4 Technology Considerations

MongoDB: This database is ideal for flexible, semi-structured data like sightings. While
it lacks some transactional integrity compared to SQL databases, its scalability and
JSON-friendly structure make it a strong choice. Although a SQL database like
PostgreSQL could improve data consistency, MongoDB’s flexibility aligns better with
our needs.

Spring Boot: Chosen for its robustness and strong support for RESTful APIs, Spring
Boot simplifies backend development and integrates seamlessly with MongoDB.
Although complex, its built-in features reduce boilerplate, saving time. Alternatives like
Node.js could offer a lighter stack, but Spring Boot’s stability and Java-based
environment are ideal for our goals.

HTML/CSS/JavaScript: These core web technologies provide broad compatibility and
control over the UI, allowing us to build a responsive and accessible interface. While
frameworks like React or Vue.js could streamline development, using plain
HTML/CSS/JavaScript keeps our front end lightweight and manageable.

50

5 Testing

5.1 Unit Testing
Frontend units being tested:

In order to test our frontend UI components, we manually viewed the page in separate
browsers (Chrome, Edge, Safari) to ensure compatibility. In each of those browsers, we
checked the responsiveness of each page to different screen sizes by adjusting the
screen size of the browser. This helped us to ensure compatibility with different device
types and sizes.

When testing our communication with the backend APIs, we first used Bruno to
understand the request and how it works. Then, once we have verified the functionality,
we implemented the request in the frontend and added proper error handling for edge
cases and for unforeseen response types.

To test our page navigation, we manually did end-to-end testing, ensuring that every
page has a navigating path to any other page.

Backend/Database units are being tested using JUnit tests:

There are several features that need to be tested for their basic functionality. The
tagging system that was created has several basic features that have been tested. The tag
system needs to ensure that tags can identify butterflies and that tags can correctly
belong to their tagging system. The tag definitions need to properly validate tags to
ensure that the tag falls under the rules of the tagging system. This also includes
pre-generated tags that also fall under the tagging system. When comparing tags and
tag systems, ensure that the hash coding system is able to properly compare the tags.

Butterflies need to be tested so that duplicate butterflies cannot be entered into the
database unless the duplicate butterflies are marked as dead. When inserting or
deleting data from the database, the insertion and deletion processes need to ensure
that they are only deleting or inserting what is expected. Permissions will need to be
enforced during the regular API calls. The permissions must follow the outlined
permission schema that our client has provided. The permission scheme will not allow
for any domains to access each other’s data.

5.2 Interface Testing
Frontend to Backend:

Interface face testing for the frontend was done mostly through the testing of API calls.
All API call testing was done through Bruno. When new requests were implemented, a
Bruno request was made for frontend members to use and test the request while in
development. While testing during development, this allows members to understand
request and response bodies for both proper and improper requests to improve error
handling robustness.

All requests were tested with their respective end points, which include all GET, POST,
PUT, and DELETE requests.

51

Backend to Database:

Interface testing for the backend was mostly done through query validation. Validating
query data flow, results, and result formatting for all requests was done through the
implementation of requests in Bruno. Incoming request bodies and response bodies are
easily validated through the testing of the request through Bruno.

Response times of requests were also a big point of testing with the backend
implementation. When it comes to accessing large sets of data for reporting
information, many tests were administered to optimize the run time when retrieving
large sets of data. Most of this was done through Bruno, but small amounts of testing
were done on the live server to confirm run times within the AWS VM instance
(changes in compute power have impacts on query run time). Optimization was then
done through aggregate creation on the backend to specify how sets of data should be
handled within the database when it comes to foreign keys (DB references).

 5.3 Integration Testing
Backend Integration:

Integration tests involve running a MongoDB instance (or an embedded database) to
verify actual database operations. Once the database and backend are connected,
manual checks are performed to validate key workflows like user creation, tag
assignment, and data retrieval for sightings.

Backend-Frontend Integration:

Once the frontend and backend are connected, we manually test the data-driven
functionalities to ensure they work as intended. This includes workflows such as: User
authentication and authorization, tagging and spotting processes, and displaying data
for various institutions and users. Since the API is already verified during backend
testing, the focus is on ensuring the integration works as expected in real-world
scenarios. This approach ensures that any issues arising from frontend-backend
interactions are identified and resolved efficiently without duplicating API-level
verifications.

Screen Functionality Integration for Frontend:

Navigational Integration involves ensuring that the new page can be properly navigated
to and from based on existing screens. After the development of new pages with
functionality for navigation, the pages would be tested to ensure the correct
functionality. When using GitLab for our workflow, it was simple to merge new pages
into the development or production branches to then test with other page navigation.

Data Fetching Integration ensures the page properly receives and displays all data
obtained from the request for the current user. Testing for this lied discreetly in

52

development, as we utilized local and session storage of user or facility information to
be reused on any page the user navigated to, rather than making new requests for the
same information. As a result, data overlap within the frontend of the system was kept
to a minimum.

 5.4 System Testing
For the frontend, we utilized a live development environment to test changes through
manual end-to-end testing. This live development environment allowed us to simulate
our production environment, ensuring that functionality would be consistent when we
deployed our web application. This created a smooth deployment process for our
frontend application onto the live production server.

Our system-level testing strategy ensures the backend operates reliably by combining
automated and manual approaches. Unit tests verify individual components, ensuring
their functionality in isolation. Interface and integration tests use a hosted MongoDB
instance to validate operations like inserting, retrieving, and deleting data while
confirming relationships and constraints are upheld.

For deployment, we perform manual testing to ensure services are accessible externally
and workflows like user registration and tag assignment function as expected. This
layered approach ensures all components and their interactions meet project
requirements while focusing on practical, real-world functionality.

 5.5 Regression Testing
We set up automated test cases that ran each time we pushed new code to one of our
branches on GitLab, providing us with automated integration testing. We created a
CI/CD pipeline within GitLab to help us achieve this. Because we were using git, we
were able to utilize the version control features to revert to old changes if an updated
code version did not provide the results we expected. Each branch was run against the
CI/CD test cases prior to merging, meaning that all code merged had been tested with
the current working version of the application.

 5.6 Acceptance Testing
We ensured that all performance metrics were met, which includes page load time and
request response time. We also confirmed that exported files of data reports are of a
high quality and manageable download size. Along with these quantitative acceptance
tests, we also had regular qualitative testing in the form of direct meetings with the
client/product owner to ensure project scope and goals are met at all times throughout
the process. These qualitative tests, along with strong communication with the client,
allowed us to meet the needs of our client.

53

5.7 User Testing
For our user testing, we delivered prototypes to our client that were distributed to other
butterfly facilities and used for a short amount of time to test functionality and user
interaction for guests, docents, and admin user types. In order to set up the facilities
and navigate the application, we first made and sent a manual to our client. After our
client and the other facilities set up their customized domain, they were able to give
access to the guests to test out the report features of tagging butterflies. The guest users
were able to participate by visiting the butterfly facility and scanning the QR code that
led them to the facility's website. Then, the guest users were able to enter the tags of
butterflies that they spotted around the exhibit. This data was then stored in the
database, and the admins of each facility were able to generate reports and access the
generated data.

From our user testing phases, we got lots of valuable feedback on improvements we
could make in order to improve the user experience for all user types. The overall
general reaction to the application from our users was very positive. However, there
were lots of little changes that we made in order to enhance the experience of the users
and to tailor to the needs of the administrators in terms of data displaying. Something
we noticed in our first prototype was that the admin users were not able to intuitively
navigate through the application. We communicated with the administrators on what
they would like to see change for the navigation and made the necessary changes for
our next prototype. The next time we delivered a prototype to the administrators, we
were able to see a large difference in their ability to navigate the application.

5.8 Security Testing
Since our web app was marketed to other facilities for usage, information privacy was a
strong concern. Sensitive information for each facility involved was held securely in the
database. We took standard security principles into account when developing both the
frontend and backend of the application in order to provide our users with a secure
experience.

Since we used AWS and Docker to host both the database and the frontend web app, we
have a strong built-in security infrastructure in place. We focused primarily on
implementing high security features on the backend to ensure that it can not be
manipulated in any way. We prevented query injection into fields from an attacker
attempting to retrieve sensitive database information pertaining to facility or user
account data. Along with this, we have ensured that each request was properly
formatted and cannot have request parameters nor request bodies manipulated by an
outside user trying to break the site. This was implemented by both frontend and
backend logic to ensure user input is treated properly by the system.

54

Vulnerability testing was one of the later forms of security testing we do. As stated
before, AWS has a strong infrastructure in terms of machine security, meaning we had
little work to do when configuring host machine security; however, vulnerability testing,
port scanning, and more were administered to ensure safety. This was also adapted with
AWS machine configuration to ensure ports were closed, secure versions of operating
systems were chosen, and no severe connection vulnerabilities were present in which an
attacker could gain access and enumerate.

Lastly, since we used AWS, we have longevity with machine security as AWS security
systems will be updated even after we have completed development on the project.

5.9 Results
Our testing results have indicated strong compliance with requirements and user needs.
All unit tests have passed successfully, validating the individual components of our
system. Additionally, manual testing of workflows and components confirms that the
design performs as expected. While these tests do not guarantee an error-free
implementation, they significantly reduce the likelihood of bugs in the software.

Qualitatively, client feedback has been positive, particularly regarding the UI design.
The service's speed meets user expectations, and additional optimization is deemed
unnecessary at this stage due to the already satisfactory user experience. Moving
forward, our focus will remain on maintaining this level of reliability as new features are
integrated.

55

6 Implementation
We have implemented a fully functional website that allows users to easily and
efficiently sight and track butterflies throughout multiple facilities. This involves
allowing guests to enter sightings of butterflies at any facility they may be visiting, while
also giving facility workers the ability to perform much more advanced tasks in order to
manage their site. This involves adding new butterflies, viewing report data based on
sightings, managing and setting up new facilities, deleting unwanted entries, and more.
Our goal when beginning this project was to provide the users with a full suite of tools
for the efficient and quick management of site butterfly tracking without needing a
background in database management. Our tracking solution allows them to view
important data about their butterflies' release dates, species, totals, and even lifespans
in order to give them useful information on how they are performing compared to other
sites and what may be working or not working.

One feature that was unable to be implemented was importing previous databases for
any facility. We were able to successfully add an import feature for putting previous data
they may have collected into our new system. But, this requires the data to be
structured in a very specific way that many facilities may not have previously used. This
means that case-by-case data will have to be restructured in a unique way in order for it
to align with the structure of our database, making it a very difficult task to create a
universal solution that is simple enough for anyone to use. We have provided a method
if some time is spent reformatting data, but it may not be perfect for some different
scenarios.

6.1 Design Analysis
We have ensured through personal and user testing that all of our pages are responsive
and perform the needed function without error in order to deliver a streamlined user
experience. Our primary goal was to make sighting a butterfly as simple and intuitive as
possible for a user, and this has been achieved by utilizing user feedback and iterating
upon previous designs. We had to ensure that we did not overcomplicate any tasks
while still having them be in-depth enough to efficiently perform the needed tasks. This
works well as our target user group often cannot have a strong background in
technology and needs the site to be as easy to learn as possible.

Our main area that does not work as expected is the data importing. It is not very
user-friendly compared to the rest of the site, as it requires an understanding of data
structures like JSON and how to convert large data into a specified format. This is a
time-consuming and difficult task that can be very error-prone if you are unfamiliar
with the process. Also, importing all of this previous data can take quite some time if it
is a very large dataset. In order to make this a smoother process, we could have allowed

56

our database to be more adaptable and one-size-fits-all. But, this would also lead to
worse performance and possibly make it more error-prone in the future.

57

7 Ethics and Professional Responsibility

7.1 Areas of Professional Responsibility/Codes of Ethics

Area of
Responsibility

Definition ACM Code of
Ethics

Team Description

Work
Competence

Work is
completed to the
highest quality
within our team's
ability

2.1 Strive to
achieve high
quality in both
the processes and
products of
professional work

Regular code
testing and
coding reviews
prior to merging
changes to our
main branches

Financial
Responsibility

Keep costs to a
minimum while
maintaining
quality

1.2 Avoid harm Researched
several hosting
services and
picked the one
that is most
cost-effective

Communication
Honesty

Give updates on
work you have
done, plan to do,
and are currently
doing

1.3 Be honest and
trustworthy

Sharing with each
other what we are
working on

Health, Safety,
Well-Being

Ensure the
security of the
facilities and
users

1.2 Avoid harm We are looking
into
implementing
security for our
website

Property
Ownership

Respect the
ownership of
resources and
ideas available to
us

1.5 Respect the
work required to
produce new
ideas, inventions,
creative works,
and computing
artifacts

We ensure that all
of the content we
use is either cited
or free for use

Sustainability Ensure
environmentally
friendly software
and use
sustainable tools

1.1 Contribute to
society and to
human
well-being,
acknowledging

We chose
technologies that
are
well-established
and will be

58

that all people are
stakeholders in
computing.

serviced for many
years to come

Social
Responsibility

Upkeep user
engagement and
involvement
amongst guests at
the facilities

2.7 Foster public
awareness and
understanding of
computing,
related
technologies, and
their
consequences.

We designed our
UI in a way to
keep our users
engaged

 Table 7.1 (Areas of Professional Responsibility/Codes of Ethics table)

What we did:

Throughout the development of the project, we kept regular contact via Discord messaging
to update each other on the work that we are doing. We used Git and GitLab for version
control as well as quality control. We utilized code reviews and code testing prior to
merging any code changes to our main branches. This ensures that we keep a high quality
of code and reduce the risk of finding bugs down the line. We saw our progress through our
GitLab issue board, which contained all of the things we planned on doing, were currently
working on, and had finished working on. We implemented existing software features in
order to improve our design and increase sustainability.

Area we performed well in:

Work Competence: We ensured that all code changes were reviewed and tested by at least
one other member of the team before merging a branch. This ensured quality work and
kept us all accountable for fixing any oversights in our own code caught by another team
member.

Area we could have improved:

Communication Honesty: We did not always keep each other updated on what we were
working on, and there were disconnects between what we expected someone to be doing vs
what they were actually doing. This was harmful to our progress, as we wouldn’t want to
assume something is being done when it is actually not being worked on. We could have
had more frequent and formal team meetings to prevent this, rather than primarily
communicating through Discord via text.

59

7.2 Four Principles

60

 Beneficence
(Promoting
Good)

Nonmaleficenc
e (Avoiding
Harm)

Respect for
Autonomy

Justice

Public health,
safety, and
welfare

Our project
design greatly
increases the
performance
and ability of
administrators
to report,
which affects
their
day-to-day
workflow.

Our design
does not harm
the general
well-being of
users in any
way.

Our design
allows each
facility to
configure its UI
in its own way,
which can
benefit its
personal brand
and image.

Our design will
have the same
functionality
for each facility,
not creating an
imbalance of
features from
location to
location.

Global,
cultural,
and social

Our design
promotes a
more accessible
and
well-performin
g workplace
within any
facility that
decides to
utilize our
application.

Our design
does not harm
the values of
any specific
cultural groups
or people,

Since our
design isn’t
required to be
used by guests,
there is no
cultural
autonomy
impact on our
design.

Our project
design will
benefit any
facility
enclosure
workspace for
administrators,
volunteers, and
guests in a
multitude of
ways.

Environmental The design
does aim to
provide data to
administrators
and researchers
to benefit the
longevity of
butterflies,
which I would
say is a good
thing to
promote.

Our design
does depend on
tagged butterfly
enclosures
which could be
seen as a harm
to the natural
environment
for butterflies.

Tagging
butterflies
could have an
environmental
impact, but our
project builds
on the basis
that the
butterflies are
already tagged.
However, this is
likely still a
negative impact
on butterfly
autonomy.

Our project
design will
provide
butterfly
enclosure
administrators
with relevant
information on
butterfly life
spans based on
species. This
can be used to
derive the
environmental
impacts of
enclosures on

Table 7.2 (Four Principles Table)

7.3 Virtues

Team Virtues

Integrity: Integrity was crucial to our team both when it came to development and
teamwork interaction. In terms of development, the integrity of code as well as the
moral integrity of each team member was kept to a high standard. Integrity of team
members when it comes to deadlines, functionality implementations (quality of work),
and honesty when facing issues was crucial to our success.

Perseverance: A large part of being a software developer is being able to persevere
through problems. Most software developers will tell you stories of debugging code for
hours just to find that a single line of syntax was causing the whole system to not
function properly. As a team, we found perseverance very important to being able to
meet our goals. Valuing perseverance as a team helped lead us to better collaboration
and ultimately a better end product.

Collaboration: When working on a large software project like the one we were faced
with, collaboration is of utmost importance. Being able to collaborate effectively in our
own way helped us create a high-quality product. Collaboration through our GitLab
workflow benefited us greatly while also teaching us the proper ways of collaborating on
a mutual goal in the industry. Each team member was able to contribute in their own
way at their own pace for the mutual team goal through our team's collaboration.

61

specific species'
lifespans.

Economic Our web
application will
provide
Butterfly
Exhibits with
an inexpensive
way to
maintain their
data while
keeping a
high-quality
user experience
for their guests.

We chose an
inexpensive
hosting service
in order to
mitigate the
amount of
money our
client needs to
spend.

Exhibits don’t
have to pay for
a new tagging
system, as our
web application
will be able to
handle any
system they
choose to use.

All exhibits will
have access to
the web
application at
no cost.

Andrew

Accountability has been a virtue I have demonstrated thus far in our senior design
project. This is important to my character and taking responsibility for my actions,
along with taking responsibility for my assigned work for the team. Persevering and
communicating with my team to ensure I meet deadlines and produce quality work is
key when it comes to accountability. I have shown this virtue by being clear and honest
with my team in my work progress and communicating my own responsibilities for the
project.

Determination is a virtue that I would like to work on moving forward with the
project. Although I think I am determined to meet deadlines and project goals, I haven’t
acted on this virtue up to this point. Being more determined in the future could help
the team collaboratively push the project further than its intended goal and boost team
performance. To demonstrate this virtue, I could take more of a leadership role and
accept more accountability for the project in order to increase determination in
finishing the project for not only me but my team as well.

Alex

Collaboration is a virtue that I have shown while working on this project through
participating in code reviews and sharing my work and knowledge with other group
members. I ensure that all of the code I add is tested and reviewed by another team
member to align with our team's standards. I make sure that everyone is aware of what I
am working on and make sure to update team members on the work we need to
complete.

Resilience is a virtue that I could improve upon going forward with the project. I feel
that sometimes I will run into a difficult problem, and it will deter me from completing
work that I need to get done. I sometimes put the work on hold for too long, and it
could delay my completion time when I could have completed it earlier.

Charlie

Reliability is a virtue that I have shown consistently throughout this project. It is
important to always follow through with your word given to your teammates, especially
when working with deadlines, as it can cause incomplete products if not properly
addressed. I have shown this throughout the semester by ensuring that anything I
commit to is complete by the needed deadlines.

Creativity is a virtue that can lead to great solutions for a problem. Unfortunately, I feel
that sometimes I have not taken full advantage of this virtue and resort to the safe
option of doing what I know already. This virtue is important for innovating and
creating new, better solutions to existing problems. To demonstrate this virtue, I could

62

start to put more effort into thinking of new possible methods to address issues that I
may have previously handled in a different way.

Carter

Tenacity has been key for me during this project. It's important to follow through on
commitments, especially with deadlines, to avoid leaving tasks unfinished. I've made
sure to meet every deadline and complete all my responsibilities on time throughout
the semester.

Punctuality is crucial for keeping everything on track, but I recognize I’ve struggled
with being on time for meetings and check-ins. Being punctual helps maintain
momentum and respect for everyone's time. To improve this, I plan to better manage
my schedule and set earlier reminders to ensure I’m always on time.

Jaret

Adaptability is a crucial skill and component that a software engineer must have.
Many times, a project may need to be adjusted or an approach will need to be changed
since there are flaws existing in the original plan. The ability to willingly adjust your
plan and make the necessary changes is an important part of the job of a software
engineer

 Perseverance is a virtue that is important for a software engineer to possess. Software
development is not always a pretty process and can bring many headaches to the user.
This virtue has been demonstrated throughout the semester since there have been
several small roadblocks and challenges that the team has faced and needed to
overcome.

63

8 Conclusions
8.1 Summary of Progress

Throughout the course of this class, we were able to develop and complete a fully
functional website for tracking butterflies within facilities across the nation. This
involved implementing hundreds of features in both the backend and frontend in order
to achieve the functionality needed. We have been able to function cohesively as a team
to reach the results we wanted and are satisfied with our accomplishments. The website
we have created is fully developed and allows facilities to retrieve detailed, precise
information and statistics while also providing an interactive experience for visitors to
learn more about the butterflies they are seeing. It also meets our responsiveness goals,
allowing the website to be a very streamlined experience.

Testing of the application was done progressively throughout the development of the
application. The most important testing was client satisfaction; over the development of
the application, the client was always keyed in on UI or functionality of page designs to
ensure compliance and satisfaction with the end product. The application is now being
used by our client along with a number of other facilities for testing. The compliance of
the application is actively being modified to meet user needs for all the facilities that
are utilizing it in different ways. As we near the end, the number of modifications to the
functionality of the application has come to a stop, as we have addressed the majority of
user needs that required additional functionality to be incorporated.

8.2 Value Provided
The Global Butterfly Longevity Tracker aimed to fulfill a need for several different
butterfly facilities across the United States. Right now, several butterfly facilities do not
have a simple and free-to-use application that can track butterfly sightings and lifespan
data. Some available solutions would include closed-source and paid software, provide
the necessary data within a spreadsheet, or mark all the data down on paper manually.
The latter two solutions do not allow for an easy experience to generate specialized
reports based on information in the database. None of these solutions allows for
features that can enhance the guests’ experience when they are visiting a butterfly
exhibit.

This project has been built to have a simple layout for the user and for an administrator
at the butterfly exhibit. For the guest view, they will scan a QR code and be prompted
with a box that asks them to enter the butterfly code. The administrator view will allow
them to perform administrative actions on their domain, such as adding new
butterflies, editing butterflies, generating reports, editing domain information,
generating reports, and several more features. This application allows for butterfly

64

facilities to have a free alternative that can help them handle massive amounts of data
about butterfly lifespans for their registered butterflies.

8.3 Next Steps
This project has met all the requirements our client initially laid out. Throughout
development, new milestones for functional requirements were introduced and
dynamically added into the final product of the application. The hosting of the
application has been set up on the client's own AWS account and at a lower cost than
the previous implementation. This gives the client full control over the application and
when it will be live or not. The scope of our project requirements has all been delivered
upon within our final iteration. From here, the web application will be distributed and
used by numerous facilities similar to the Reiman Gardens. Each of the facilities will be
able to communicate with our client for proper use of the application and configuration
for their specific facility needs.

65

9 References
[1] Amazon, “AWS Documentation,” Amazon.com, 2019. https://docs.aws.amazon.com/
 (accessed May 03, 2025).

[2] “Bruno - The Open Source API Client,” Bruno Docs, 2025.
 https://docs.usebruno.com/introduction/what-is-bruno (accessed May 03, 2025).

[3] “GoDaddy - Manage DNS records,” Godaddy.com, 2025.
 https://www.godaddy.com/help/manage-dns-records (accessed May 03, 2025).

[4] “MongoDB Documentation,” Mongodb.com, 2025.
 https://www.mongodb.com/docs/?msockid=348a20889edc617036a133089fd4600b
 (accessed May 03, 2025).

[5] MDN Contributors, “JavaScript,” MDN Web Docs, Sep. 25, 2023.
 https://developer.mozilla.org/en-US/docs/Web/javascript (accessed May 03, 2025).

[6] “Spring Framework Documentation :: Spring Framework,” docs.spring.io.
 https://docs.spring.io/spring-framework/reference/index.html
 (accessed May 03, 2025).

66

https://docs.aws.amazon.com/
https://docs.usebruno.com/introduction/what-is-bruno
https://www.godaddy.com/help/manage-dns-records-680?msockid=348a20889edc617036a133089fd4600b
https://www.mongodb.com/docs/?msockid=348a20889edc617036a133089fd4600b
https://developer.mozilla.org/en-US/docs/Web/javascript
https://docs.spring.io/spring-framework/reference/index.html

10 Appendices

Appendix 1 – Operation Manual

10.1.1 Create a new domain

1. If you are not Nathan Brockman, please contact him at mantisnb@iastate.edu in order
to get your domain created correctly. (Keep in mind that your tagging system will NOT
be able to be updated in the future, please ensure to provide the correct information
when creating your domain.)

2. If you are Nathan Brockman, log in using your super admin credentials on the
tracker.flutr.org/AdminLogin.html page.

Figure 10.1

67

mailto:mantisnb@iastate.edu
https://tracker.flutr.org/AdminLogin.html

3. Navigate to the Create New Facility page by pressing the button located in the top right
corner of the screen.

Figure 10.2

4. Select the necessary Tag Colors. e.g., if your domain uses sticker color as a unique
identifier for your butterfly tags, then you will want to enable this option and select all
of the colors your domain uses for tag color.

 Figure 10.3

a. Please do not enable this option if you only have one sticker color or do not use
sticker color as a unique identifier.

b. You must provide a minimum of two colors from the drop-down when the Tag
Colors option is selected.

5. Select the necessary Tag Shapes. e.g., if your domain uses sticker shape as a unique
identifier for your butterfly tags, then you will want to enable this option and enter all

68

sticker shapes that your domain uses to identify butterflies.

 Figure 10.4

a. Please do not enable this option if you only have one sticker shape or do not
use sticker shape as a unique identifier.

b. You must provide a minimum of two shapes when the Tag Shape option is
selected.

6. Select the necessary Tag Foreground Colors. e.g., if your domain uses letter/symbol
colors or a single colored dot in the foreground, then you will want to enable this
option and enter all letter or dot colors that your domain uses to identify butterflies.

 Figure 10.5

a. Please note that this option alone will only allow you to select ONE foreground
color per butterfly. e.g., your tag might be “ABC Red”, where A, B, and C are all
in red font or have a red dot next to them.

b. Please do not enable this option if you only have one letter/dot color in your
tags foreground, or do not use letter/dot color as a unique identifier.

c. You must provide a minimum of two colors when the Foreground Color option
is selected.

7. Select the necessary characters to be allowed in your butterfly tags. e.g., if your domain
uses uppercase letters and numbers to uniquely identify your butterflies, you will want

69

to toggle on both “Allow Uppercase Letters” and “Allow Numbers”

 Figure 10.6

a. Besides “Only Dots”, these options can be used in any combination.
b. You are required to select at least one of these options
c. If your domain uses different colored dots in order to identify butterflies,

enable foreground colors and select the “Only Dots” option.

 Figure 10.7

i. You must provide a minimum of two foreground colors
ii. Using “Only Dots” will not allow you to use any of the other character

options.

70

8. Enter the number of characters or dots on each butterfly. e.g., if you use 4 unique
characters or dots to identify your butterfly, you will enter 4.

Figure 10.8

a. Please note that this number will be a constant for all butterflies. You will not
be able to have different length tag codes within a domain.

b. This option is required in order to create your domain.
9. Enter information you would like your visitors to know about your facility in the About

section.

 Figure 10.9

a. This section is required and will be available to all users
10. Enter a username and password that you would like to use to log in as a dummy user

for the domain.

Figure 10.10

a. This user will have domain admin permissions within your domain.
b. You will log in to this account first and start creating any users you need in

order to give each person an authenticated user account.

71

c. These fields are both required.
11. Upload the images corresponding to the tag instructions and logo to be displayed

throughout the application.

Figure 10.11

a. The tag guide image should be informative and explain how the user will read
and enter butterfly tag information.

b. The logo should be associated with your butterfly exhibit, as it will be displayed
throughout the web application.

c. Both images are required.
12. Choose a domain name and a domain ID unique to your butterfly exhibit

 Figure 10.12

a. In the Facility Name option, you will enter the name of your exhibit. This will
be displayed on the welcome page for guests.

b. In the Facility ID field, please enter some unique domain identification. This
identifier must be all lowercase and contain only alpha characters.

72

13. Create your new domain and dummy user by pressing the submit button!

 Figure 10.13

a. Confirmation messages will appear at the top of your screen if the creation was
successful, otherwise, you will be displayed an error message along with what
fields need to be filled.

b. The next step will be to log in to this dummy user, see section 10.1.2, Login as
authenticated user.

10.1.2 Login as an authenticated user

1. Find the tracker.flutr.org/AdminLogin.html and enter your username and password
credentials.

 Figure 10.14

a. If you forget your password, please contact your domain administrator in order
to get it changed.

10.1.3 Access domain information

73

https://tracker.flutr.org/AdminLogin.html

1. Upon logging in to your authenticated admin account, navigate to the Update/Access
Facility Info page.

Figure 10.15

2. Here you will see all of the domain information, including a link to your domain's
guest entry page as well as a generated QR code to that same link.

 Figure 10.16

a. You are able to download the QR code and print it out so that guests can scan
it and have easy access to your domain's guest entry page.

10.1.4 Update domain information

74

1. Upon logging in to your authenticated admin account, navigate to the Update/Access
Facility Info page.

Figure 10.17

2. Edit any fields that you would like to update for your domain information. To confirm
your changes, press the Save and Confirm button.

 Figure 10.18

a. Please keep in mind that you are NOT able to change the Facility ID.
b. All changes made here will be global for all users within the domain.

75

3. Upon Successful completion, you will receive a confirmation message.

 Figure 10.19

10.1.5 Create users within your domain

1. Upon logging in to your authenticated admin account, navigate to the Create New User
page.

 Figure 10.20

76

2. Fill out the Create User form in order to make a new authenticated user for your
domain, and press submit when you are finished.

 Figure 10.21

a. Keep in mind that all fields are required and final; you will not be able to
update the user's role later.

10.1.6 Create users within other domains (Super Admin users only)

1. Upon logging in to your authenticated super admin account, navigate to the Create
New User page.

 Figure 10.22

77

2. You have now gained access to create Super Admin user accounts, which can be found
under the role selection.

 Figure 10.23

a. Please only create Super Admin users for trusted individuals, and note that
they will have the same powers as you.

3. You will now also be able to edit the Domain ID field, and you will be able to specify
which domain you would like this user to be under.

 Figure 10.24

78

a. Please use your powers responsibly, and we ask that you confirm with the
domain administrator that you are creating an account prior to submitting new
user accounts.

10.1.7 Change user passwords (Super Admin users only)

1. Upon logging in to your authenticated super admin account, navigate to the Create
New User page.

 Figure 10.25

2. Enter the Username who needs to have their password changed. Enter the new
password for the user and click on the Update Password button to confirm the

79

changes.

 Figure 10.26

a. Note that this password update will be effective immediately.

10.1.8 Registering Butterflies within your domain

1. Upon logging in to your authenticated admin account, navigate to the Register
Butterflies page.

 Figure 10.27

80

2. The first thing to do will be selecting the date and time at which you want to register
the date to.

 Figure 10.28

a. You will be able to choose previous dates if your system is down in order to
track the proper butterfly life span time.

3. Enter the species name and Tag Code definition corresponding to the butterfly that
you want to register.

 Figure 10.29

81

a. You will only be allowed to enter tags that correspond to the tag definition
specified while setting up your domain.

4. To register more than one butterfly at a time, press the “Add New Butterfly” button,
and another butterfly registration row will be added. You can easily remove these rows
by pressing the red “Remove” button to the right of the corresponding row you want to
remove.

 Figure 10.30

a. Note that you can not have any blank rows in your form when you press
submit.

b. The date and time variable will be the same for each butterfly when they are
submitted together. It is auto-populated to the current time in your time zone.

5. Press the “Submit” Button to add these new butterflies to the database. Everyone will
now be able to enter their codes in the sighting entry page.

10.1.9 Marking butterflies as dead

82

1. Upon logging in to your authenticated admin account, navigate to the Mark Dead
Butterflies page.

 Figure 10.31

2. Enter the Tag Code of the butterfly that you would like to mark as dead.

 Figure 10.32

3. If you would like to mark multiple butterflies as dead, click the “Add New Record”
button in order to add another row and enter another tag. Press the red remove button

83

in the corresponding row to remove a butterfly tag from the mark as dead form.

Figure 10.33

4. Press the “Mark as Deceased” button to confirm the death of these butterflies in the
database.

 Figure 10.34

a. The death date and time will be set to the local time of the user when the
“Mark as Deceased” button is pressed.

10.1.10 Adding new species of butterflies (Super Admin users only)

1. After logging in, select the ‘Add/Edit/Delete Species’ button from the Admin Home
page to be redirected to the Edit Butterflies page.

84

 Figure 10.35

2. On the next page, select the ‘Add’ tab at the top of the window (1). Next, fill in the
information for the new butterfly species you want to add, which includes the
‘Common Name’ and ‘Species Name’ fields (2).

 Figure 10.36

3. Once you have filled in the specified butterfly information, click the ‘Confirm’ button
(3) to submit the new species to the database. This new species will now be fully
functional.

85

Note: This application is using a previous senior design team's Digital Ocean image
bucket to provide unique species images to users. If you desire to add a unique species
image, you must add a picture to that Digital Ocean image bucket in the following
format: <Species Name>_closed.JPG

For example, the Acrea anemosa species has the following image within the digital
ocean bucket: Acrea anemosa_closed.JPG

If images are uploaded in this format, the app will automatically use the new images
for the unique species; if not, the app will use a default image of a butterfly whenever
possible.

10.1.11 Editing existing species

1. After logging in, select the ‘Add/Edit/Delete Species’ button from the Admin Home
page to be redirected to the Edit Butterflies page.

 Figure 10.37

2. Ensure you have selected the ‘Edit’ tab (1) at the top of the screen. Next, in the search
field (2), enter the species name that you would like to update. When you select a
species from the search drop-down, the page will auto-populate with the species
information (3).

86

 Figure 10.38

3. Within the species information section (3), each field will now be editable. Here you
can change the information with the desired new information for the butterfly species.
When you have edited the desired fields, press the ‘Confirm’ button (4) to submit the
information changes to the database.

Note: If you wish to change the species name, it is recommended to delete the species
and recreate it from the ‘Add Species’ tab.

10.1.12 Deleting species of butterflies

1. After logging in, select the ‘Add/Edit/Delete Species’ button from the Admin Home
page to be redirected to the Edit Butterflies page.

87

 Figure 10.39

2. Ensure you have the ‘Delete’ tab (1) selected at the top of the screen. Next, in the
search field (2), enter the species name that you would like to delete. When you select
a species from the search drop-down, the page will auto-populate with the species
information (3).

 Figure 10.40

88

3. Ensure the populated butterfly information (3) contains the species that you want to
delete. When you have confirmed that the species is the correct species that you are
intending to delete, hit the ‘Delete’ button (4) to remove the species from the database.

10.1.13 Sighting Butterflies as an authenticated user

1. After logging in, press the ‘Enter a tagged butterfly’ button to navigate to the next page.

 Figure 10.41

2. Next, enter the desired tag into the entry box.

 Figure 10.42

89

3. After entering the desired tag, press the confirm button to enter the sighting. Upon
confirmation, you will be redirected to the next screen with the butterfly information
displayed. Note that if you enter a tag that does not exist, you will be prompted with an
error message.

10.1.14 Access sighting data within your domain

1. After logging in, press the ‘Access Data’ button on the Admin Home page to be
redirected to the database view page.

 Figure 10.43

2. After you have been redirected, you will be presented with all the sighting entries from
the domain your account is associated with. From here, you can click on the columns
to sort by what you prefer, or you can search by any field that the top of the screen.

90

 Figure 10.44

Note: If you are logged into a Super Admin account, you will automatically be returned
data from all domains (depending on the number of sightings total, can take up to 20
seconds). If you want to see individual domains, use a non-super admin account, or
use the Generate Report features below.

10.1.15 Generate a report on your domain data

1. After logging in, click on the ‘Generate report’ button to be navigated to the next page.

91

 Figure 10.45

2. When generating a report, first select a report type from the drop-down menu. Then
enter the desired information in the lower section (changes based on report type)

 Figure 10.46

3. When you have selected the report type you want and entered the desired information
in the lower section, click the generate report button to be taken to the report. The

92

selected information will be displayed at the top of the report along with all the
sightings that meet the criteria of the report.

Figure 10.47

10.1.16 Generate report on other domains' data (Super Admin users only)

1. After logging in, click on the ‘Generate report’ button to be navigated to the next page.

 Figure 10.48

93

2. When generating a report, first select a report type from the drop-down menu. Then
enter the desired information in the lower section (changes based on report type).

3. To filter by domain, select the domain filter at the bottom. You will then see a search
bar where you can select any number of domains to include in your search. If you do
not select any domains to filter as a Super Admin, you will automatically receive
information only from your domain.

 Figure 10.49

10.1.17 Logout

1. Upon logging in as an authenticated admin or super admin, you will see the logout
button at the bottom of your screen. Press it to log out and return to the Admin Login

94

page.

 Figure 10.50

10.1.18 Enter as a guest

1. When visiting the butterfly exhibit, find the QR code provided by the butterfly exhibit
and scan it.

 Figure 10.51

95

2. Enter your name and press the “Enter as Guest” button in order to enter the domains
page as a guest.

 Figure 10.52

10.1.19 Tag a butterfly

1. If you are a guest, follow the instructions on 10.1.18, Enter as a guest. If you are a
docent, log in with your authenticated username and password. You will be auto
redirected to the same landing page as the guest user. If you are a domain or super
admin, log in with your credentials and press the “Enter a tagged butterfly” button.

 Figure 10.53

96

2. You will be met with the ability to enter the tag code of a butterfly you spot, along with
the tagging instructions provided by the domain. Click the “Confirm” button to submit
your sighting.

 Figure 10.54

3. You will be met with a Success message, and then an image and some information
about the butterfly that you spotted, including the Scientific and Common Name.

 Figure 10.55

a. To continue spotting butterflies, click on the “Submit another” button.

97

b. If you are done submitting and are no longer interested in spotting butterflies,
click on the “I’m done” button to return to the guest entry page.

10.1.20 Learn more about the butterfly exhibit

1. If you are a guest, follow the instructions on 10.1.18, Enter as a guest. If you are a
docent, log in with your authenticated username and password. You will be auto
redirected to the same landing page as the guest user. If you are a domain or super
admin, log in with your credentials and press the “Enter a tagged butterfly” button.

 Figure 10.56

2. Click on the “About” button in the top right corner to access the domain information.

 Figure 10.57

98

3. Here you will see the domain “about” information.

 Figure 10.58

Appendix 2 – alternative/initial version of design

● Generating report version change

o Originally, we were grabbing all of the butterfly data from the backend and
filtering it on the frontend. However, we found that filtering the data on the
backend is much quicker, and so we decided to stick with the backend filtering
the data based on the request body and returning all of the data to be
displayed.

● Butterfly tagging system

o Originally, we were accounting for sticker color, sticker shape, letters/numbers,
a single dot, or color of the letters/numbers on the sticker, and a customizable
length of tag code. We were able to upgrade this system to allow domains to
specify the type of characters they want to allow, use dots instead of
letters/numbers, and a select number of colors that will allow the user to be
able to read the actual color name. This upgraded system is simple and
efficient, while providing more than enough customization to a domain's
tagging system.

● Data display screen

o In our original design, it was not able to handle colors or shapes of butterfly
tags, which was an issue. We had to completely scrap the screen and use a

99

different design in order to effectively display the data. This was quite the
setback, as displaying colors and shapes in a way that made sense to any user
was complex. In the end, we were able to create one column that displayed the
tag as it would be seen on the physical butterfly, which was an efficient use of
space while still displaying the necessary tagging information.

Appendix 3 – Other considerations

● One important lesson that we learned is that the behaviour between production and
development environments differs, and what works in one environment may not work in the
other. It is important that in the future, we are able to test in a simulated production
environment in order to ensure complete functionality when we deploy our web applications.

● Chunking large requests is very important, and making a request to process thousands of
butterflies at one time is not practical. We went from doing a 290,000-line import request to
chunking it into about 1,000 lines of JSON at a time.

● We learned that CORS policy errors happen a lot and arise a lot during local development. This
caused a lot of issues with testing our communication between the frontend and the backend.
However, after lots of trial and error, we were able to disable CORS and everything worked
perfectly (we think).

● A variable named onlyDots kept on coming back within our code after merge requests, and we
could never figure out why. It was not assigned to anything and just created errors within our
JavaScript and unexpected behaviour. We have finally removed onlyDots from our code, until it
one day inevitably returns.

● We had a bug that ran an infinite loop in our backend and fried our server. The infinite loop
would trigger when a bad login request was sent. We thought we had the correct login
credentials and were spamming the login button as a joke, which ended up killing the server.
This happened a few times before we finally figured out why our backend kept getting really,
really slow and then shutting off.

● Gitlab will auto-set your merge request to main no matter what branch you branch off of. This
caused us to merge code into main when we didn’t want to, multiple times, and create more
stress than we needed.

● We decided to use MongoDB, which ended up being a mistake because it turns out we needed a
relational database in order to run queries most efficiently. However, by the time we figured this
out, it was too late, and we could not go back. We have made MongoDB into a relational
database.

● When Charlie was going through the design document, he was commenting on changes we
could make. He just didn’t realize that he was commenting (ONCE- Charlie) on the prompts of
the sections and not our actual responses. For example, he didn’t like that the word ‘salient’ was
being used (because he had never heard it before) and made a comment and changed it. We
never wrote that word, it was in the section prompt.

● Here are a few of our favorite commit messages-

100

o LEBROOOOOOOOOOON JAAAAAAAAAAAAAAAAAAAAAAAAMES - 2nd best
commit of all time.

o oh yeeaaah - Oh no–accidentally merged into main

o main is gone. main is deleted. - Post merge to main, we deleted all the code in it.

o FIRST TRY RAHHHHHHHHHHHHH - Definitely was my first try.

o What was bro cooking?

 Figure 10.59

o big @ss update to all things back-end, MongoDB connected, Database Models…
- Big updates.

o bug fixed, probably not in the most robust way but thats okay - Yea no biggie.

o removed duplicate foreground colors in main EZPZ CURRY FOR THREEEEEEE
BAAAAANG - Splash.

o pushing to main because why not - Who needs good coding practices?

o Im perfect, formatted perfect - He was feeling himself.

101

o minor changes - There were multiple push messages with this name, some were
minor, some were major

o changes - idk what

o Broken - I don’t think it worked

o - This was all the same bug

 Figure 10.60

o bing - Alex literally just changed a constant to a variable

o bug fixes with sizing - you’ll never guess who wrote this commit message

o

 Figure 10.61

o I’m merging all over - He merged

102

Appendix 4 – Code

● sd / sdmay25-03 · GitLab

o Backend Folder GitLab

o Frontend Folder GitLab

Appendix 5 – Team Contract
Team Members

● Alex Herting
● Andrew Ahrenkiel
● Carter Awbrey
● Charles Dougherty
● Jaret Van Zee

103

https://git.ece.iastate.edu/sd/sdmay25-03
https://git.ece.iastate.edu/sd/sdmay25-03/-/tree/main/src/main/java/com/sdmay25/BLT?ref_type=heads
https://git.ece.iastate.edu/sd/sdmay25-03/-/tree/main/src/site?ref_type=heads

Required Skill Sets for Your Project

● Agile
● AWS Server Hosting
● CI/CD
● Cyber Security
● Database Management
● Data Security
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

Skill Sets covered by the Team

Jaret Van Zee

● Agile
● CI/CD
● Cyber Security
● Data Security
● Database Management
● GitLab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture

104

● Software Testing

Andrew Ahrenkiel

● Agile
● CI/CD
● Cyber Security
● Database Management
● Data Security
● Database Design
● GitLab, Git, Git CLI
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

Charles Dougherty

● Agile
● Database Management
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● Software Architecture
● Software Testing

105

Alex Herting

● Agile
● Database Management
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

Carter Awbrey

● Agile
● AWS Server Hosting
● CI/CD
● Cyber Security
● Database Management
● Data Security
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management

106

● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

Project Management Style Adopted by the Team

 Agile

● GitLab issue board used to assign and track team progress

● Weekly group “stand-up”

● Project tickets/issues split amongst group members

● Issues identified and added to the backlog

● Biweekly client check-ins acting as product owner

Individual Project Management Roles

1) Alex Herting Frontend Developer

2) Andrew Ahrenkiel Full Stack Developer

3) Carter Awbrey Backend Lead

4) Charles Dougherty Frontend Developer

5) Jaret Van Zee Backend Developer

Team Contract

Team Members:

1) Alex Herting 2) Andrew Ahrenkiel

3) Carter Awbrey 4) Charles Dougherty

5) Jaret Van Zee

107

Team Procedures

(1) Regular team meetings outside of class will be done virtually over Discord. The regular
team meeting will occur on Friday at 6 pm.

(2) The preferred method of communication for updates, questions, reminders, or general
information will be through Discord chat or Discord voice call. If communication is needed for
any inner conflicts or major issues, it will be done in person or via Discord video/voice call.

(3) Decisions will be made by a majority vote since there is an odd number of team members.
Team members should be given a fair amount of time to discuss their choice and why they
want that choice. Team members in the minority vote should comply with the decision made.
Team members in the majority should see if they can compromise by including any qualities
of the minority's decision.

(4) Carter Awbrey will be the official team auditor for team meetings. The backup team
auditor will be Jaret Van Zee. The team auditor will be expected to take notes from each
meeting. The notes should well document the current progress of each team member’s work,
any roadblocks, and planned work. All important information should also be documented in
the auditor’s notes, such as new meeting times, deadlines, and important workflow changes.
The auditor should make the notes available no more than 1 day after the meeting to the rest
of the team.

Participation Expectations

(1) All team members are expected to show up on time to any scheduled team meeting unless
they communicate prior to the meeting. All team members are expected to participate
whenever they can in a meeting. All team members should be actively listening whenever
another team member is speaking. Conflict and discussion are okay in a team meeting, but
members must respect each other’s ideas, even if they do not agree with the idea being
discussed.

(2) Team members will need to put their full effort into whatever work they are presenting to
the rest of the team. All hard deadlines should be met ahead of time to review each other's
work. Any teamwork will be divided equally among all team members as fairly as possible. A
soft deadline will be determined, likely 2-3 days before the hard deadline, that which all team
members should have their segment of work completed by.

(3) Team members are expected to regularly update their other team members. If any team
member runs into a roadblock, they should notify their team members in no more than 24
hours. If a team member runs into any difficulties or roadblocks, a discussion or team meeting
should be held in order to solve the issue.

108

(4) A team member is expected to work on their work or tasks for an average of three hours
per week. Three hours per week is not a hard limit; this number could be higher or lower on a
weekly basis. These three hours will not include any regularly scheduled team meetings.

Leadership

(1) These are the leadership roles that each team member fulfills:

Jaret Van Zee - Database Manager & Timeline Organizer

Carter Awbrey - Project Manager & Visionary

Alex Herting - Frontend Manager

Charles Dougherty - UX/UI Design Director

Andrew Ahrenkiel - Team Organization & Technical Design

(2) These are the strategies each team member will follow to support and guide the work of
other team members.

Jaret Van Zee - I will ensure that all team members are getting assigned the work that is
appropriate for them. I will also make sure that work is getting split fairly between the team
members and that work is getting done on time.

Carter Awbrey - As the project manager, I will oversee the communication between members
to ensure that deliverables are met and that our product meets the needs of our client.
Additionally, I will work to address and mediate issues that may arise between team members.
This doesn’t limit my work to solely leadership-based contributions, but does include them.

Alex Herting - As the frontend manager, I will be responsible for creating tickets related to the
front end and assigning them to members of the team. Checking in to see how far along we are
on tasks and re-assigning tickets accordingly.

Charles Dougherty - It is essential that all parts of the team work collaboratively to create one
whole product rather than pieces strung together. I will ensure that each person feels included
and understands the goal of what is currently being worked on, and make sure that what has
already been completed follows the requirements. I will also contribute to handling conflicts
in code or design choices to create a better final product, even with differing ideas.

Andrew Ahrenkiel - As the Team Organization leader, I will ensure weekly meetings have
applicable purposes and are productive. I will be responsible for the Gitlab issue board and
tracking member progress. As the Technical Design Lead, I will ensure all code within the
development branches is functional and appropriate; I will review the majority of code merges
to ensure code quality.

109

(3) These are the strategies each team member will follow to recognize each other’s work.

Jaret Van Zee - Keep to set soft and hard deadlines for work that needs to be completed. Will
do regular check-ups on team members to ensure they are doing okay on their own work.

Carter Awbrey - Follow set team deadlines and communicate regularly and clearly with other
team members.

Alex Herting - Setting appropriate deadlines and checking in weekly on the front-end tasks to
make sure that we are meeting those deadlines.

Charles Dougherty - Follow deadlines, checking in on each area of the project and not just
where I am currently working, checking GitLab commits and pushes, and discussing future
improvements/changes.

Andrew Ahrenkiel - Gitlab issues, weekly check-ins, code commits and pushes, feature
branches, etc.

Collaboration and Inclusion

(1) These are a list of skills, experience, expertise, and unique perspective that each team
member brings to the team:

Jaret Van Zee - He is currently working as an IT intern. Jaret also has skills in back-end
development and database management. Jaret can use his knowledge from his cybersecurity
minor to bring new perspectives to the team and the overall security of the software being
developed.

Carter Awbrey - Skills include server-side and cloud integration having worked with cloud
products many times in the past. Additionally I have experience writing UI in HTML/CSS/JS or
using React frameworks. I have professional experience writing backend/server software in
.NET and Java as well as integrating that with frontend products.

Alex Herting - Skills include full-stack development, having experience with React framework
and SQL for databases. I currently work as a software developer, which has given me
experience with the software development process and managing large workloads. Have
experience in JavaScript in web development.

Charles Dougherty - Experienced in working in teams to develop a strong final product.
During my internships, I have worked in SQL and MongoDB databases and also developed
many frontend applications. Finding new solutions to a problem is one of my strong suits as I
enjoy finding new technologies and discovering what can be done within the limitations.

Andrew Ahrenkiel - Skills include full-stack development, particular experience with both
React and Angular, along with Mongo, SQL, and Oracle. I can bring a unique viewpoint of the
SDLC from my internship experience with Wells Fargo, having worked as a DevOps engineer

110

and a Fullstack Software Engineer. I also recently worked on a database migration project as
part of my internship, which may provide me unique expertise in database design

(2) Throughout the semester we will keep track of our tasks using an issue board and
milestones with deadlines that we would like to meet. We will appropriately assign tasks to
each member such that everyone had an appropriate workload to complete for each milestone.
We will establish a safe environment for curiosity and learning where members are not afraid
to ask questions and feel comfortable having differing opinions. This promotes everyone to
speak and voice their opinions on project issues and challenges that arose.

(3) We will first have a confidential 1-on-1 conversation with either a trusted team member,
our advisor, or our client. We will ensure that any collaboration and inclusion issues are taken
seriously and handled amongst the group.

Goal-Setting, Planning, and Execution

(1) These are the official goals that this team will strive to achieve this semester:

I. Learn how to work with each other as a team.
II. Build a good working relationship with our client(s) and supervisor

III. Continuously present high quality work as a team and individually to our professors,
client(s), and supervisor. Ensure that all work completed meets its expected deadline.

IV. Regularly communicate with each other about how progress on our work.
V. Create a detailed and exact prototype of product we plan to build for our client in the

following semester.

(2) Whenever new work is assigned to the team, a timeline should be created that the team
will follow to make sure that the work is completed by the deadline. Each team member will
be assigned work that best meets their expertise or interest. All work will be divided evenly to
the best of our ability.

(3) During each team meeting, each team member will discuss what work they have
completed, what work they plan to complete in the next few days, and if the member has run
into any issues. The other team members will compare their current work progress to the
expected timeline of progress to ensure that the team member is getting their allotted work
complete.

Consequences for Not Adhering to Team Contract

(1) If any team member knowingly violates the team contract, the following procedures will be
met.

First Infraction - A soft warning, the team member that committed the infraction will asked by
another team member to not commit that infraction again

111

Second Infraction - A strong warning, one or two team members will directly say how the team
member’s infractions have affected the team and what they’ve done

Third Infraction - Official Team Meeting, an official team meeting will be made in order to
discuss how this can stop in the future. A resolution must be reached and a remediation plan
must be created in order for the team meeting to be successful

(2) If a team member is consistently committing infractions against the team after the
warnings and team meetings. All team members except the team member committing the
infractions will meet with the SE 491 professors to discuss a best possible solution for the rest
of the solution. This may involve 491 professors directly talking with the team member
committing the infractions, a specialized plan may be created for the team member, or
possibly removal of the team member from the team.

a. I participated in formulating the standards, roles, and procedures as stated in this contract.
b. I understand that I am obligated to abide by these terms and conditions.
c. I understand that if I do not abide by these terms and conditions, I will suffer the consequences

as stated in this contract.

1) DATE: 09- 19 - 2024

2) Alex Herting DATE: 09 - 19 - 2024

3) DATE: 09- 19 - 2024

4) Carter Awbrey DATE: 09- 19 - 2024

5) Jaret Van Zee DATE: 09- 19- 2024

112

	
	Executive Summary
	Learning Summary
	1.Development Standards & Practices Used
	
	2.Summary of Requirements
	3.Applicable Courses from Iowa State University
	4.New Skills/Knowledge acquired

	Table of Contents
	
	1. Introduction
	1.1. Problem Statement
	
	1.2. Intended Users

	2. Requirements, Constraints, and Standards
	2.1. Functional and Non-Functional Requirements
	1.User Authentication
	2.Support User Group Hierarchy
	3.Support Multiple Domains/Facilities
	4.Create Reports from Queried Data
	5.Quick Response and Querying Times
	6.Portability

	
	2.2. Resource Requirements
	1.AWS Hosting Services
	2.Cost-Efficient Upkeep

	2.3. Aesthetic Requirements
	1.Color Scheme
	2.Typography
	3.Images

	
	2.4. User Experiential Requirements
	1.Ease of Navigation
	2.Accessibility

	
	2.5. Database Requirements
	1.Data Integrity
	2.Scalability
	3.Performance
	4.Design

	2.6. Engineering Standards
	1.RFC 7231 – HTTP/1.1 Semantics and Content
	2.RFC 7519 – JSON Web Tokens (JWT)
	3.NIST SP 800-63B – Digital Identity Guidelines

	
	
	3. Project Plan
	
	3.1 Project Management/Tracking Procedures
	3.2 Task Decomposition
	Frontend
	Backend
	Frontend + Backend

	3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	Frontend
	
	Backend

	3.4 Project Timeline/Schedule
	3.4.1 Gantt Chart Tasks (Semester 1)
	
	3.4.2. Gantt Chart Tasks (Second Semester)
	Frontend
	Backend

	
	3.4.3. Deliverable Dates

	3.5 Risks and Risk Management/Mitigation
	
	
	
	
	3.6 Personnel Effort Requirements
	3.7 Other Resource Requirements

	
	4. Design
	4.1 Design Context
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 Design Exploration
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3Final Design
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	
	4.4 Technology Considerations

	
	5 Testing
	5.1 Unit Testing
	5.2 Interface Testing
	 5.3 Integration Testing
	 5.4 System Testing
	 5.5 Regression Testing
	 5.6 Acceptance Testing
	5.7 User Testing
	5.8 Security Testing
	5.9 Results

	
	6 Implementation
	6.1 Design Analysis

	
	7 Ethics and Professional Responsibility
	7.1 Areas of Professional Responsibility/Codes of Ethics
	7.2 Four Principles
	7.3 Virtues
	

	
	8 Conclusions
	8.1 Summary of Progress
	8.2 Value Provided
	8.3 Next Steps

	
	9 References
	
	10 Appendices
	Appendix 1 – Operation Manual
	Appendix 2 – alternative/initial version of design
	Appendix 3 – Other considerations
	Appendix 4 – Code
	Appendix 5 – Team Contract

