
3 Project Plan 
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES 

We will be using Agile as our project management style for this project. The primary reasons that we
decided on an agile approach were because of the flexibility, incremental delivery, continuous improvement,
and collaboration aspects. Having independent tasks within our backlog is super important in software
development. We do not want to have dependent tasks that could be delayed because of unexpected issues
arising during development. We value the incremental delivery aspect of agile because we plan on
producing prototypes for our client before providing him with the full version of the product. This ties into
the continuous improvement aspect because as we produce prototypes, we will improve our product based
on client feedback. The collaboration aspect of agile is excellent for software development. We have toned
back the daily standup meetings to once a week to check in with one another and discuss the work we have
done and plan to do.

We plan to track project progress using Git and GitLab. We have a GitLab repository set up with an issue
board and milestones that are dated with deadlines. Inside GitLab we have also set up a scheme for our
branch setup to keep our code organized, allowing for easier project progression due to simplicity. Git is an
amazing tool for software development because of its version control, which is the main reason we decided
to use it. It allows us all to collaborate on our repository simultaneously and promotes good coding habits.

 

3.2 TASK DECOMPOSITION 

Frontend

● Core HTML Development
○ Converting Figma boards to functional HTML
○ Multi-Page navigation
○ Facility management pages

■ Adaptable page color theming
○ User log-in pages
○ Mobile device optimization

● Backend Interactions
○ User sign-in implementation and authentication
○ Butterfly tagging support
○ Graphical data views
○ Butterfly data filtering and sorting
○ Unique butterfly tagging for each facility

Backend

● Database collection and Layout
○ Create a database management scheme
○ Create database objects
○ Map backend to database
○ Containerization
○ Design backend API
○ User sign-ins and permissions database

■ Secure authentication process
■ Quick and easy sign-in for repeat users

○ Data Querying
● Database butterfly storage

○ Database butterfly reports
○ Permanent Server hosting solution



○ Multi-facility tagging support

User Testing

● Test the website with those who will be interacting with the website
○ Test website with facility operators
○ Test website with guests and general public

 

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

Frontend

● UI Design Completion
○ Metric: Percentage of originally requested designs successfully converted to functional

HTML.
○ Milestone: Complete the conversion of 100% of requested views into functional HTML

components.
● Functionality Development

○ Metric: Percentage of interactive elements from the design that function as intended.
○ Milestone: Ensure all interactive elements are fully functional and have corresponding tests

written.
● Responsiveness

○ Metric: Whether a view is able to adapt to different screen sizes and aspect ratios while
adequately displaying content.

○ Milestone: Ensure all implemented views adapt effectively to various screen sizes. including
Desktop, Phones, and Tablets.

● Accessibility
○ Metric: Number of Web Content Accessibility Guidelines (WCAG) criteria met, as defined

by W3C.
○ Milestone: Achieve an 'AA' level of accessibility by implementing the required WCAG

guidelines.
● Compatibility

○ Metric: Compatibility tests pass rate across target browsers.
○ Milestone: Ensure our designs achieve a 100% pass rate in compatibility tests across major

browsers, including Chrome, Firefox, and Safari.
● Client Acceptance

○ Metric: Level of client satisfaction with the design as measured through feedback.
○ Milestone: Achieve full client satisfaction with all designs, with no further changes

requested after review.

Backend

● API Development and Integration
○ Metric: Percentage of API endpoints developed, tested, and documented.
○ Milestone: Implement 100% of API endpoints outlined in the project requirements, with

thorough integration tests for each endpoint.
● Automated Testing Coverage

○ Metric: Percentage of backend code and branches covered by unit and integration tests.
○ Milestone: Achieve 100% code coverage and 100% branch coverage across systems to ensure

comprehensive testing and reduce the likelihood of bugs in critical areas of the backend.
● Database Performance and Optimization

○ Metric: Average database query response time for data visualization features.



○ Milestone: Achieve a response time that is at least 50% faster than the previous design
while maintaining equivalent end-user functionality.

● Tagging Adaptability
○ Metric: Capability to integrate specific butterfly tagging systems into the database.
○ Milestone: Successfully incorporate all widely used butterfly tagging systems adopted by

major institutions.
● Security Compliance

○ Metric: Number of security vulnerabilities identified and remediated (tracked via
penetration testing or security audits).

○ Milestone: Resolve 100% of critical vulnerabilities, aiming to avoid common security risks
outlined by OWASP guidelines. Ensure that, to the best of our abilities, protections are in
place against vulnerabilities such as broken access control, injection, cryptographic failures,
and others.

● Error Handling and Uptime
○ Metric: Number of errors that impact user experience or server uptime.
○ Milestone: Implement logging and monitoring systems to ensure that the number of

critical errors impacting user experience or server uptime remains at a minimum.
● Data Safety and Recovery

○ Metric: Risk of data loss in the event of a system failure.
○ Milestone: Implement robust data backup procedures to ensure that no critical data is lost

during a system failure. Validate backups and confirm the ability to recover data in the
event of a failure.

● User Data Management and Compliance
○ Metric: Compliance with data protection standards as outlined in the GDPR (General Data

Protection Regulation) and CCPA (California Consumer Privacy Act).
○ Milestone: Achieve compliance with data privacy and protection standards, ensuring that

all user data is encrypted and anonymized where applicable.

 



3.4 PROJECT TIMELINE/SCHEDULE 

Gantt Chart Tasks:

● Convert Figma Board to HTML
○ Export figma board to code using PxCode
○ Correct responsiveness and design of the exported screens

● Create a Database Management Scheme
○ Brainstorm ideas for database collections and layout
○ Create a structure that will work best for our data types

● Create Database Objects
○ Create database collections
○ Define object parameters

● Containerization
○ Create a container for the backend
○ Create a container for frontend

● Map backend to database
○ Structure backend
○ Define object parameters within the backend code
○ Create and test requests to the database

● Multi-Page Navigation
○ Connect HTML screens via button clicks
○ Allow for user interaction in the UI

● Butterfly Tagging System
○ Allow user input of butterfly tags
○ Create requests to the backend for entering sightings

● Database Query System
○ Create efficient code for querying data

● Design Backend API
○ Plan and define endpoints
○ Implement endpoint calls

● Create Website Data Views



○ Implement admin interaction to create data reports
○ Implement calling to backend to gather correct data
○ Display the queried data

● First prototype
○ Deliver a baseline product that our client can test
○ Receive feedback from client
○ Change functionality based on client interactions
○ Repeat this process and iteratively improve our product

● Adding other butterfly systems
○ Implement ability for product to scale to other facilities
○ Allow for multiple admin users
○ Create butterfly tagging systems unique to each exhibit

Deliverables:

Week 4: Initial Concept and Design Review

Week 8: Present responsive screens to client

Week 15: Initial prototype with minimal functionality

Week 20: Second prototype with improvements based on client feedback

Week 24: Third prototype with improvements based on client feedback

Week 26: Finalized product



3.5 RISKS AND RISK MANAGEMENT/MITIGATION 

Tasks and Their Associated Risks

● Convert Figma Board to HTML
○ Risk 1: Views may not easily convert from Figma to HTML.

■ Probability: 100%
■ Mitigation Strategy: Begin conversion early in the project to allow sufficient time

and resources for completion.
○ Risk 2: Views may not be fully responsive or accessible as planned.

■ Probability: 100%
■ Mitigation Strategy: Focus on achieving WCAG AA accessibility standards and

conduct regular checks to ensure designs are adaptable to target screen sizes.
● Create Database Objects

○ Risk: Initial database objects may lack sufficient fields or functionality to meet project
needs.

■ Probability: 45%
■ Mitigation Strategy: build out a thorough list of all data points that need to be

stored and get each of those data points with their constraints to be officially
signed off by our client.

● Containerization
○ Risk: Containerizing the app may be more complex than expected.

■ Probability: 50%
■ Mitigation Strategy: Conduct early research to verify compatibility of components

and ensure they integrate smoothly into a container.
● Database Query System / Map backend to database

○ Risk: Database performance may not meet client requirements.
■ Probability: 80%
■ Mitigation Strategy: Optimize the database structure and create indexes for

high-demand queries. Track other potential optimizations during database
creation to maintain performance.

● Multi-Page Navigation
○ Risk: Pages may not be easily navigable.

■ Probability: 60%
■ Mitigation Strategy: Test the navigation design with potential users to verify ease of

use and page hierarchy effectiveness.
● Butterfly Tagging System

○ Risk: System may not support all common butterfly tagging methods used across sites.
■ Probability: 70%
■ Mitigation Strategy: Consult the client and potential site owners about their

tagging methods and ensure the system can incorporate all identified methods.
● Design Backend API

○ Risk 1: Backend APIs may lack adequate security.
■ Probability: 50%
■ Mitigation Strategy: Stay aware of common security risks and implement

safeguards, including minimizing stored user data and maintaining regular
backups for data integrity.

○ Risk 2: Initial API list may not cover all required software functions.
■ Probability: 100%
■ Mitigation Strategy: Design APIs with extensibility in mind, allowing the team to

add new functionality as needed.
● Create Website Data Views

○ Risk: System may struggle to display complex data views efficiently, potentially affecting
performance and data accuracy.



■ Probability: 70%
■ Mitigation Strategy: Conduct performance testing for data-heavy views, consider

pre-aggregating data to reduce load, and implement pagination for large datasets.
Gather user feedback early to improve clarity and usability.

● First prototype
○ Risk: Initial prototype may not align with client expectations, resulting in delays due to

rework.
■ Probability: 80%
■ Mitigation Strategy: Hold frequent, iterative feedback sessions with the client and

conduct regular checkpoints to integrate feedback progressively, reducing the need
for major adjustments.

 



3.6 PERSONNEL EFFORT REQUIREMENTS 

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are clunky
and require a lot of
rework to function
properly.

Multi-Page navigation 10 Properly linking the web
pages requires
meticulous iterations
and testing to ensure all
links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and require
many different features
to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t be
too complicated on the
HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a lot
of optimization and
rework.

Frontend-to-Backend
Interactions

User sign-in
implementation and
authentication

15 Ensuring the sign-in is
secure and cannot be
exploited is a delicate
process requiring time.

Butterfly tagging
support

15 Implementing tag
posting and spotting
will require complex
interaction with the
backend.

Graphical data views 20 Creating useful and
streamlined displays
will require advanced
methods we have not
yet explored.

Butterfly data filtering
and sorting

15 Ensuring that the filters
and sorting methods are



Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are clunky
and require a lot of
rework to function
properly.

Multi-Page navigation 10 Properly linking the web
pages requires
meticulous iterations
and testing to ensure all
links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and require
many different features
to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t be
too complicated on the
HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a lot
of optimization and
rework.

efficient and effective
will require deep
analysis of the data and
structure of the
database.

Unique butterfly tagging
for each facility

15 Allowing facilities to
utilize various tagging
methods requires great
consideration of the
possible methods and
how to allow for them.

Database collection and
Layout

Create a Database
Management Scheme

15 Creating a scheme that
can effectively manage
all of the data requires a
lot of research and a
deep understanding to
meet the needs properly.



Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are clunky
and require a lot of
rework to function
properly.

Multi-Page navigation 10 Properly linking the web
pages requires
meticulous iterations
and testing to ensure all
links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and require
many different features
to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t be
too complicated on the
HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a lot
of optimization and
rework.

Create database objects 15 The objects are essential
to the structure of the
database and may need
to be reworked if not
done correctly the first
time.

Containerization 15 Complex and requires
proper implementation
to improve
performance.

Map backend to
database

20 Involves setting up
complex database
connections to the
backend, which can
cause efficiency issues if
not properly mapped.

Design backend API 20 Very important



Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are clunky
and require a lot of
rework to function
properly.

Multi-Page navigation 10 Properly linking the web
pages requires
meticulous iterations
and testing to ensure all
links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and require
many different features
to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t be
too complicated on the
HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a lot
of optimization and
rework.

interfaces for the front
end to interact with that
must allow for
scalability.

User Testing Test website with facility
operators

5 Distributing the website
and gathering feedback
from the employees of
Reiman

Test website with guests
and general public

5 Gathering feedback
from the public utilizing
surveys

 

3.7 OTHER RESOURCE REQUIREMENTS  

The main resource requirement for our project would be hosting the service for our client on AWS. This
hosting service will be used to configure and control the status of the web application and make it available
and easy to use for the client. Other external resources being used are MongoDB and Java Spring for the



backend and database implementation. Java Spring is a free service that we are utilizing to secure CRUD
requests between the front end and the database. Next would be the implementation of the database using
MongoDB, which is a non-relational collection-based database. Here, we will store collections for each
facility and track their specific tagged butterflies. Lastly, we are implementing Docker so our client can
control all services from a single place. This includes the cloud hosting through AWS and the backend
service implementation through a VM. Docker is a service offered by AWS, so integration will be quick and
easy.


